Research Article
BibTex RIS Cite

SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS

Year 2024, Volume: 7 Issue: 2, 113 - 127, 31.07.2024
https://doi.org/10.33773/jum.1504811

Abstract

Abstract. For a coloring set B ⊆ Zn, by considering the Fox n-coloring of any knot K and using the knot semigroup KS, we show that the set B is actually the same with the set C in the alternating sum semigroup AS(Zn, C). Then, by adapting some results on Fox n-colorings to AS(Zn, B), we obtain some new results over this semigroup. In addition, we present the existence of different homomorphisms (or different isomorphisms in some cases) between the semigroups KS and AS(Zn, B), and then obtained the number of homomorphisms is in fact a knot invariant. Moreover, for different knots K1 and K2
, we establish one can obtain a homomorphism or an isomorphism from the different knot semigroups K1S and K2S
to the same alternating sum semigroup AS(Zn, B)

References

  • C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, (2004).
  • J. W. Alexander, Topological invariants of knots and links, Trans. Am. Math. Soc., Vol.30, pp.275-306 (1923).
  • P. Andersson, The color invariant for knots and links, Amer. Math. Monthly, Vol.5, No.102, pp.442-448 (1995).
  • Y. Bae, Coloring link diagrams by Alexander quandles, Journal of Knot Theory and Its Ramifications, Vol.21, No.10, pp.13 (2012).
  • A. L. Breiland, L. Oesper, L. Taalman, p-coloring Classes of Torus Knots, Missouri J. Math. Sci., Vol.21, pp.120-126 (2009).
  • K. Brownell, K. O'Neil, L. Taalman, Counting m-coloring classes of knots and links, Pi Mu Epsilon Journal, Vol.12, No.5, pp.265-278 (2005).
  • W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, Journal of Knot Theory and its Ramifications, Vol.23, No.6, (2014).
  • R. H. Crowell, R. H. Fox, Introduction to Knot Theory, Springer, (1977).
  • M. Elhamdadi, S. Nelson, Quandles: An Introduction to the Algebra of Knots, AMS Book Series, Vol.74, (2015).
  • D. Joyce, A Classifying Invariant of Knots, The Knot quandle, Journal of Pure and Applied Algebra, Vol.23, pp.37-65 (1982).
  • L. H. Kauffman, Formal Knot Theory, Dover Publications, (2006).
  • A. Kawauchi, A Survey of Knot Theory, Springer, (1996).
  • W. B. R. Lickorish, An introduction to Knot Theory, Springer, (1997).
  • T. Mochizuki, The Third Cohomology Groups of Dihedral Quandles, J. Knot Theory Ramifications, Vol.20, No.7, pp.1041-1057 (2011).
  • K. Murasugi, Classical Knot Invariants and Elementary Number Theory, Contemporary Mathematics, pp.167-196, (2006).
  • O. Nanyes, An Elementary Proof that the Borromean Rings are Non-Splittable, The American Mathematical Monthly, Vol.8, No.100, pp.786-789 (1993).
  • D. Rolfsen, Knots and links, AMS Chelsea Pub, (2003).
  • A. Vernitski, Describing semigroups with defining relations of the form xy = yz and yx = zy and connections with knot theory, Semigroup Forum, Vol.93, No.2, pp.387-402 (2016).
  • N. Yoko, On the Alexander polynomials of pretzel links L, Kobe J. Math, Vol.2, pp.167-177 (1987).
Year 2024, Volume: 7 Issue: 2, 113 - 127, 31.07.2024
https://doi.org/10.33773/jum.1504811

Abstract

References

  • C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, (2004).
  • J. W. Alexander, Topological invariants of knots and links, Trans. Am. Math. Soc., Vol.30, pp.275-306 (1923).
  • P. Andersson, The color invariant for knots and links, Amer. Math. Monthly, Vol.5, No.102, pp.442-448 (1995).
  • Y. Bae, Coloring link diagrams by Alexander quandles, Journal of Knot Theory and Its Ramifications, Vol.21, No.10, pp.13 (2012).
  • A. L. Breiland, L. Oesper, L. Taalman, p-coloring Classes of Torus Knots, Missouri J. Math. Sci., Vol.21, pp.120-126 (2009).
  • K. Brownell, K. O'Neil, L. Taalman, Counting m-coloring classes of knots and links, Pi Mu Epsilon Journal, Vol.12, No.5, pp.265-278 (2005).
  • W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, Journal of Knot Theory and its Ramifications, Vol.23, No.6, (2014).
  • R. H. Crowell, R. H. Fox, Introduction to Knot Theory, Springer, (1977).
  • M. Elhamdadi, S. Nelson, Quandles: An Introduction to the Algebra of Knots, AMS Book Series, Vol.74, (2015).
  • D. Joyce, A Classifying Invariant of Knots, The Knot quandle, Journal of Pure and Applied Algebra, Vol.23, pp.37-65 (1982).
  • L. H. Kauffman, Formal Knot Theory, Dover Publications, (2006).
  • A. Kawauchi, A Survey of Knot Theory, Springer, (1996).
  • W. B. R. Lickorish, An introduction to Knot Theory, Springer, (1997).
  • T. Mochizuki, The Third Cohomology Groups of Dihedral Quandles, J. Knot Theory Ramifications, Vol.20, No.7, pp.1041-1057 (2011).
  • K. Murasugi, Classical Knot Invariants and Elementary Number Theory, Contemporary Mathematics, pp.167-196, (2006).
  • O. Nanyes, An Elementary Proof that the Borromean Rings are Non-Splittable, The American Mathematical Monthly, Vol.8, No.100, pp.786-789 (1993).
  • D. Rolfsen, Knots and links, AMS Chelsea Pub, (2003).
  • A. Vernitski, Describing semigroups with defining relations of the form xy = yz and yx = zy and connections with knot theory, Semigroup Forum, Vol.93, No.2, pp.387-402 (2016).
  • N. Yoko, On the Alexander polynomials of pretzel links L, Kobe J. Math, Vol.2, pp.167-177 (1987).
There are 19 citations in total.

Details

Primary Language English
Subjects Group Theory and Generalisations, Topology
Journal Section Research Article
Authors

Umut Esen 0000-0001-9697-8502

Ahmet Sinan Çevik 0000-0002-7539-5065

Mehmet Çitil 0000-0003-3899-3434

Publication Date July 31, 2024
Submission Date June 25, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Esen, U., Çevik, A. S., & Çitil, M. (2024). SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS. Journal of Universal Mathematics, 7(2), 113-127. https://doi.org/10.33773/jum.1504811
AMA Esen U, Çevik AS, Çitil M. SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS. JUM. July 2024;7(2):113-127. doi:10.33773/jum.1504811
Chicago Esen, Umut, Ahmet Sinan Çevik, and Mehmet Çitil. “SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS”. Journal of Universal Mathematics 7, no. 2 (July 2024): 113-27. https://doi.org/10.33773/jum.1504811.
EndNote Esen U, Çevik AS, Çitil M (July 1, 2024) SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS. Journal of Universal Mathematics 7 2 113–127.
IEEE U. Esen, A. S. Çevik, and M. Çitil, “SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS”, JUM, vol. 7, no. 2, pp. 113–127, 2024, doi: 10.33773/jum.1504811.
ISNAD Esen, Umut et al. “SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS”. Journal of Universal Mathematics 7/2 (July 2024), 113-127. https://doi.org/10.33773/jum.1504811.
JAMA Esen U, Çevik AS, Çitil M. SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS. JUM. 2024;7:113–127.
MLA Esen, Umut et al. “SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS”. Journal of Universal Mathematics, vol. 7, no. 2, 2024, pp. 113-27, doi:10.33773/jum.1504811.
Vancouver Esen U, Çevik AS, Çitil M. SOME COLORING RESULTS ON SPECIAL SEMIGROUPS OBTAINED FROM PARTICULAR KNOTS. JUM. 2024;7(2):113-27.