Research Article
BibTex RIS Cite

On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation

Year 2025, Volume: 8 Issue: 2, 133 - 140, 19.10.2025
https://doi.org/10.33773/jum.1595221

Abstract

In this paper, second-order generalized linear recurrence relations of the form ${{V}_{n}}\left( {p}_{1},{p}_{2}, {V}_{1},{V}_{2}\right)={{p}_{1}}{{V}_{n-1}}+{p}_{2}{{V}_{n-2}}$ , where ${{p}_{1}},{{p}_{2}},$ ${{V}_{1}}\left( =a \right)$ and $ {{V}_{2}}\left( =b \right) $ are arbitrary integers, are studied to derive Binet-like formulas in simplified and comprehensive generalized forms. By imposing specific constraints on the coefficients $\left( {{p}_{1}},{{p}_{2}} \right)$ and the initial terms $\left( {{V}_{1}},{{V}_{2}} \right)$, various well-known existing formulas, such as those for classical Fibonacci and Lucas sequences, emerge as special cases of this generalization.

Project Number

None

References

  • Atkins, J., & Geist, R. (1987). Fibonacci numbers and computer algorithms. The College Mathematics Journal, 18, 328–337.
  • Basin, S., & Hoggatt, V. (1963). A primer on the Fibonacci sequence Part I. The Fibonacci Quarterly, 1, 61–68.
  • Bilgici, G. (2014). New generalizations of Fibonacci and Lucas sequences. American Mathematical Science, 8 (29), 429–1437.
  • Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17 (4), Article 14.4.7.
  • Edson, M., & Yayenie, O. (2009). A new generalization of Fibonacci sequences and extended Binet’s. Integers, 9, 639–654.
  • Ferguson, D. E. (1966). An expression for generalized Fibonacci numbers. The Fibonacci Quarterly, 4, 270–273.
  • George, A. H. (1969). Some formulae for the Fibonacci sequence with generalizations. The Fibonacci Quarterly, 113–130.
  • Horadam, A. F. (1961). A generalized Fibonacci sequence. The American Mathematical Monthly, 68, 455–459.
  • Jaiswal, D. V. (1969). On a generalized Fibonacci sequence. Labdev Journal of Science and Technology Part A, 7, 67–71.
  • Klein, S. T. (1991). Combinatorial representation of generalized Fibonacci numbers. The Fibonacci Quarterly, 29, 124–131.
  • Koshy, T. (2001). Fibonacci and Lucas numbers with applications. Wiley.
  • Krassimir, A. T., Liliya, A. C., & Dimitar, S. D. (1985). A new perspective to the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23 (1), 21–28.
  • Lee, G. Y., Lee, S. G., & Shin, H. G. (1997). On the k-generalized Fibonacci matrix Qk. Linear Algebra and Its Applications, 251, 73–88.
  • Lee, G. Y., Lee, S. G., Kim, J. S., & Shin, H. K. (2001). The Binet formula and representations of k-generalized Fibonacci numbers. The Fibonacci Quarterly, 39 (2), 158–164.
  • Miller, M. D. (1971). On generalized Fibonacci numbers. The American Mathematical Monthly, 78, 1108–1109.
  • Pond, J. C. (1968). Generalized Fibonacci summations. The Fibonacci Quarterly, 6, 97–108.
  • Sburlati, G. (2002). Generalized Fibonacci sequences and linear congruence. The Fibonacci Quarterly, 40, 446–452.
  • Spickerman, W. R., & Joyner, R. N. (1984). Binet’s formula for the recursive sequence of order k. The Fibonacci Quarterly, 22, 327–331.
  • Verma, K. L. (in press). On the matrix representation of generalized sequence and applications. J. Mathematical Sciences. Comp. Math., 6 (1).
  • Waddill, M., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5 (3), 209–222.
  • Wolfram, A. (1998). Solving generalized Fibonacci recurrences. The Fibonacci Quarterly, 36, 129–145. 140

Burada genelleştirilmiş ${{2}^{nd}}$ emir özyinelemeli ilişkisinin açık Binet formülü verilmiştir.

Year 2025, Volume: 8 Issue: 2, 133 - 140, 19.10.2025
https://doi.org/10.33773/jum.1595221

Abstract

Bu yazıda, ${{V__{n}}\left( {p__{1},{p__{2}, {V__{1} formundaki ikinci dereceden genelleştirilmiş doğrusal yineleme ilişkileri ,{V__{2}\right)={{p__{1}}{{V__{n-1}}+{p__{2}{{V__{n-2} }$ , burada ${{p__{1}},{{p__{2}},$ ${{V__{1}}\left( =a \right)$ ve $ {{V} _{2}}\left( =b \right) $ rastgele tamsayılardır ve basitleştirilmiş ve kapsamlı genelleştirilmiş formlarda Binet benzeri formüller türetmek için incelenmiştir. $\left( {{p__{1}},{{p__{2}} \right)$ katsayılarına ve $\left( {{V__{1}) başlangıç ​​terimlerine belirli kısıtlamalar uygulayarak },{{V__{2}} \right)$, klasik Fibonacci ve Lucas dizileri için olanlar gibi iyi bilinen çeşitli mevcut formüller, bu genellemenin özel durumları olarak ortaya çıkar.

Project Number

None

References

  • Atkins, J., & Geist, R. (1987). Fibonacci numbers and computer algorithms. The College Mathematics Journal, 18, 328–337.
  • Basin, S., & Hoggatt, V. (1963). A primer on the Fibonacci sequence Part I. The Fibonacci Quarterly, 1, 61–68.
  • Bilgici, G. (2014). New generalizations of Fibonacci and Lucas sequences. American Mathematical Science, 8 (29), 429–1437.
  • Dresden, G. P. B., & Du, Z. (2014). A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17 (4), Article 14.4.7.
  • Edson, M., & Yayenie, O. (2009). A new generalization of Fibonacci sequences and extended Binet’s. Integers, 9, 639–654.
  • Ferguson, D. E. (1966). An expression for generalized Fibonacci numbers. The Fibonacci Quarterly, 4, 270–273.
  • George, A. H. (1969). Some formulae for the Fibonacci sequence with generalizations. The Fibonacci Quarterly, 113–130.
  • Horadam, A. F. (1961). A generalized Fibonacci sequence. The American Mathematical Monthly, 68, 455–459.
  • Jaiswal, D. V. (1969). On a generalized Fibonacci sequence. Labdev Journal of Science and Technology Part A, 7, 67–71.
  • Klein, S. T. (1991). Combinatorial representation of generalized Fibonacci numbers. The Fibonacci Quarterly, 29, 124–131.
  • Koshy, T. (2001). Fibonacci and Lucas numbers with applications. Wiley.
  • Krassimir, A. T., Liliya, A. C., & Dimitar, S. D. (1985). A new perspective to the generalization of the Fibonacci sequence. The Fibonacci Quarterly, 23 (1), 21–28.
  • Lee, G. Y., Lee, S. G., & Shin, H. G. (1997). On the k-generalized Fibonacci matrix Qk. Linear Algebra and Its Applications, 251, 73–88.
  • Lee, G. Y., Lee, S. G., Kim, J. S., & Shin, H. K. (2001). The Binet formula and representations of k-generalized Fibonacci numbers. The Fibonacci Quarterly, 39 (2), 158–164.
  • Miller, M. D. (1971). On generalized Fibonacci numbers. The American Mathematical Monthly, 78, 1108–1109.
  • Pond, J. C. (1968). Generalized Fibonacci summations. The Fibonacci Quarterly, 6, 97–108.
  • Sburlati, G. (2002). Generalized Fibonacci sequences and linear congruence. The Fibonacci Quarterly, 40, 446–452.
  • Spickerman, W. R., & Joyner, R. N. (1984). Binet’s formula for the recursive sequence of order k. The Fibonacci Quarterly, 22, 327–331.
  • Verma, K. L. (in press). On the matrix representation of generalized sequence and applications. J. Mathematical Sciences. Comp. Math., 6 (1).
  • Waddill, M., & Sacks, L. (1967). Another generalized Fibonacci sequence. The Fibonacci Quarterly, 5 (3), 209–222.
  • Wolfram, A. (1998). Solving generalized Fibonacci recurrences. The Fibonacci Quarterly, 36, 129–145. 140
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

K. L. Verma 0000-0002-6486-8736

Project Number None
Publication Date October 19, 2025
Submission Date December 2, 2024
Acceptance Date October 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Verma, K. L. (2025). On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation. Journal of Universal Mathematics, 8(2), 133-140. https://doi.org/10.33773/jum.1595221
AMA Verma KL. On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation. JUM. October 2025;8(2):133-140. doi:10.33773/jum.1595221
Chicago Verma, K. L. “On the Explicit Binet Formula of the Generalized ${{2}^{nd}}$ Orders Recursive Relation”. Journal of Universal Mathematics 8, no. 2 (October 2025): 133-40. https://doi.org/10.33773/jum.1595221.
EndNote Verma KL (October 1, 2025) On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation. Journal of Universal Mathematics 8 2 133–140.
IEEE K. L. Verma, “On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation”, JUM, vol. 8, no. 2, pp. 133–140, 2025, doi: 10.33773/jum.1595221.
ISNAD Verma, K. L. “On the Explicit Binet Formula of the Generalized ${{2}^{nd}}$ Orders Recursive Relation”. Journal of Universal Mathematics 8/2 (October2025), 133-140. https://doi.org/10.33773/jum.1595221.
JAMA Verma KL. On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation. JUM. 2025;8:133–140.
MLA Verma, K. L. “On the Explicit Binet Formula of the Generalized ${{2}^{nd}}$ Orders Recursive Relation”. Journal of Universal Mathematics, vol. 8, no. 2, 2025, pp. 133-40, doi:10.33773/jum.1595221.
Vancouver Verma KL. On the explicit Binet formula of the generalized ${{2}^{nd}}$ orders Recursive relation. JUM. 2025;8(2):133-40.