Research Article
BibTex RIS Cite

On $\mu$-paracompact and $\mu$-expandable spaces

Year 2025, Volume: 8 Issue: 2, 85 - 92, 19.10.2025
https://doi.org/10.33773/jum.1595789

Abstract

We introduced $(\mu,\kappa)$-perfect mapping and $\mu$-expandable space in generalized topology as well as  characterized. Also give an example that there exists a $\mu$-paracompact and $\mu$-$T_{2}$ space which is not $\mu$-regular. Finally, we proved some results on preserving the image (pre-image) of $\mu$-paracompact and $\mu$-expandable space.

References

  • Császár, Á. (1997). Generalized open sets. Acta Mathematica Hungarica, 75, 65–87.
  • Császár, Á. (2002). Generalized topology, generalized continuity. Acta Mathematica Hungarica, 96, 351– 357.
  • Arar, M. (2014). A note on spaces with a countable μ-base. Acta Mathematica Hungarica, 144, 494–498.
  • Arar, M. (2016). On countably μ-paracompact spaces. Acta Mathematica Hungarica, 149, 50–57.
  • Abd El-Monsef, M. E., El-Deeb, S. N., & Mahmoud, R. A. (1983). β-open sets and β-continuous mappings. Bulletin of the Faculty of Science, Assiut University, 12, 77–90.
  • Al-Zoubi, K. (2004). s-expandable spaces. Acta Mathematica Hungarica, 102 (3), 203–210.
  • Al-Jarrah, H. H., & Al Zoubi, K. Y. (2019). P-expandable spaces. Italian Journal of Pure and Applied Mathematics, 41 (3), 497–507.
  • De Arruda Saraiva, L. E. (2011). Generalized quotient topologies. Acta Mathematica Hungarica, 132, 168–173.
  • Demir, I., & Ozbakir, O. B. (2013). β-expandable spaces. Filomat, 27 (6), 971–976.
  • Krajewski, L. L. (1971). On expanding locally finite collections. Canadian Journal of Mathematics, 23 (1), 58–68.
  • Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70 (1), 36–41.
  • Mashhour, A. S., Abd El-Monsef, M. E., & El-Deeb, S. N. (1982). On precontinuous and weak precontinuous mappings. Proceedings of the Mathematical and Physical Society of Egypt, 53, 47–53.
  • Njastad, O. (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15 (3), 961–970.
  • Sarkar, N., Das, A., & Aman, T. E. (2023). When an operator gives a unique generalized topology. Journal of Linear and Topological Algebra, 12, 97–104.
  • Ray, A. D., & Bhowmick, R. (2014). μ-paracompact and μ-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics, 45 (2), 447–453.
  • Sarsak, M. S. (2013). On μ-compact sets in μ-spaces. Questions and Answers in General Topology, 31, 49–57.
  • Zuhier, A., & Jawarneh, I. (2022). μ-countably compactness and μH-countably compactness. Communications of the Korean Mathematical Society, 37 (1), 269–277.

On $\mu$-paracompact and $\mu$-expandable spaces

Year 2025, Volume: 8 Issue: 2, 85 - 92, 19.10.2025
https://doi.org/10.33773/jum.1595789

Abstract

We introduced $(\mu,\kappa)$-perfect mapping and $\mu$-expandable space in generalized topology as well as  characterized. Also give an example that there exists a $\mu$-paracompact and $\mu$-$T_{2}$ space which is not $\mu$-regular. Finally, we proved some results on preserving the image (pre-image) of $\mu$-paracompact and $\mu$-expandable space.

References

  • Császár, Á. (1997). Generalized open sets. Acta Mathematica Hungarica, 75, 65–87.
  • Császár, Á. (2002). Generalized topology, generalized continuity. Acta Mathematica Hungarica, 96, 351– 357.
  • Arar, M. (2014). A note on spaces with a countable μ-base. Acta Mathematica Hungarica, 144, 494–498.
  • Arar, M. (2016). On countably μ-paracompact spaces. Acta Mathematica Hungarica, 149, 50–57.
  • Abd El-Monsef, M. E., El-Deeb, S. N., & Mahmoud, R. A. (1983). β-open sets and β-continuous mappings. Bulletin of the Faculty of Science, Assiut University, 12, 77–90.
  • Al-Zoubi, K. (2004). s-expandable spaces. Acta Mathematica Hungarica, 102 (3), 203–210.
  • Al-Jarrah, H. H., & Al Zoubi, K. Y. (2019). P-expandable spaces. Italian Journal of Pure and Applied Mathematics, 41 (3), 497–507.
  • De Arruda Saraiva, L. E. (2011). Generalized quotient topologies. Acta Mathematica Hungarica, 132, 168–173.
  • Demir, I., & Ozbakir, O. B. (2013). β-expandable spaces. Filomat, 27 (6), 971–976.
  • Krajewski, L. L. (1971). On expanding locally finite collections. Canadian Journal of Mathematics, 23 (1), 58–68.
  • Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70 (1), 36–41.
  • Mashhour, A. S., Abd El-Monsef, M. E., & El-Deeb, S. N. (1982). On precontinuous and weak precontinuous mappings. Proceedings of the Mathematical and Physical Society of Egypt, 53, 47–53.
  • Njastad, O. (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15 (3), 961–970.
  • Sarkar, N., Das, A., & Aman, T. E. (2023). When an operator gives a unique generalized topology. Journal of Linear and Topological Algebra, 12, 97–104.
  • Ray, A. D., & Bhowmick, R. (2014). μ-paracompact and μ-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics, 45 (2), 447–453.
  • Sarsak, M. S. (2013). On μ-compact sets in μ-spaces. Questions and Answers in General Topology, 31, 49–57.
  • Zuhier, A., & Jawarneh, I. (2022). μ-countably compactness and μH-countably compactness. Communications of the Korean Mathematical Society, 37 (1), 269–277.
There are 17 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Nırmal Sarkar 0000-0002-9050-1479

Towhıd Aman 0000-0003-4027-1422

Ashoke Das 0000-0002-6612-0182

Publication Date October 19, 2025
Submission Date December 3, 2024
Acceptance Date August 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Sarkar, N., Aman, T., & Das, A. (2025). On $\mu$-paracompact and $\mu$-expandable spaces. Journal of Universal Mathematics, 8(2), 85-92. https://doi.org/10.33773/jum.1595789
AMA Sarkar N, Aman T, Das A. On $\mu$-paracompact and $\mu$-expandable spaces. JUM. October 2025;8(2):85-92. doi:10.33773/jum.1595789
Chicago Sarkar, Nırmal, Towhıd Aman, and Ashoke Das. “On $\mu$-Paracompact and $\mu$-Expandable Spaces”. Journal of Universal Mathematics 8, no. 2 (October 2025): 85-92. https://doi.org/10.33773/jum.1595789.
EndNote Sarkar N, Aman T, Das A (October 1, 2025) On $\mu$-paracompact and $\mu$-expandable spaces. Journal of Universal Mathematics 8 2 85–92.
IEEE N. Sarkar, T. Aman, and A. Das, “On $\mu$-paracompact and $\mu$-expandable spaces”, JUM, vol. 8, no. 2, pp. 85–92, 2025, doi: 10.33773/jum.1595789.
ISNAD Sarkar, Nırmal et al. “On $\mu$-Paracompact and $\mu$-Expandable Spaces”. Journal of Universal Mathematics 8/2 (October2025), 85-92. https://doi.org/10.33773/jum.1595789.
JAMA Sarkar N, Aman T, Das A. On $\mu$-paracompact and $\mu$-expandable spaces. JUM. 2025;8:85–92.
MLA Sarkar, Nırmal et al. “On $\mu$-Paracompact and $\mu$-Expandable Spaces”. Journal of Universal Mathematics, vol. 8, no. 2, 2025, pp. 85-92, doi:10.33773/jum.1595789.
Vancouver Sarkar N, Aman T, Das A. On $\mu$-paracompact and $\mu$-expandable spaces. JUM. 2025;8(2):85-92.