Research Article
BibTex RIS Cite

On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications

Year 2025, Volume: 8 Issue: 2, 93 - 103, 19.10.2025
https://doi.org/10.33773/jum.1654134

Abstract

In this paper, the structures of linear codes over the quaternion rings
with coe cient from Zp, Hp = Zp+Zpi+Zpj+Zpk are given, where p is an
odd prime, i2 = j2 = k2 = p 1 and ij = (p 1)ji = k. The quaternion
rings over Zp decompose into two parts form Zp + iZp(or Zp + jZp or
Zp +kZp) with idempotent coe cients, depending on selecting a central
orthogonal idempotent pair. The structures of cyclic and-constacyclic
codes over Hp are determined, where p 3(mod 4), p is an odd prime,
is a unit in Hp and some examples are given. The duals of linear codes
over Hp are investigated. The parameters of quantum codes are obtained
from cyclic codes and-constacyclic over Hp.

References

  • Akbiyik, S., & Ersoy, B. A. (2017). Cyclic codes over a non-commutative ring. In 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE.
  • Aristidou, M., & Demetre, D. (2012). Idempotent elements in quaternion rings over Zp. International Journal of Algebra, 6, 249–254.
  • Calderbank, A. R., Rains, E. M., Shor, P. M., & Sloane, N. J. A. (1998). Quantum error correction via codes GF(4). IEEE Transactions on Information Theory, 44, 1369–1387.
  • Cheraghpour, H., & Ghosseiri, M. N. (2019). On the idempotents, nilpotents, units and zero-divisors of finite rings. Linear and Multilinear Algebra, 67, 327–336.
  • Dougherty, S. T., & Andre, L. (2016). Euclidean self-dual codes over non-commutative Frobenius rings. Applicable Algebra in Engineering, Communication and Computing, 27, 185–203.
  • Kandasamy, W. B. V. (2000). On the finite Quaternion rings and skew fields. Acta Ciencia Indica, XXVI(2), 133–135.
  • Miguel, C. J., & Serodio, R. (2011). On the structure of quaternion rings over Zp. International Journal of Algebra, 5, 1313–1325.
  • Tan, P. L., & Sison, V. (2021). Quaternions over Galois rings and their codes. arXiv. https://arxiv. org/abs/2109.00735

Kuaterniyon Halkaları Üzerindeki Devirli ve labda-Constacyclic Kodlar ve Uygulamaları

Year 2025, Volume: 8 Issue: 2, 93 - 103, 19.10.2025
https://doi.org/10.33773/jum.1654134

Abstract

Bu çalışma, katsayıları \( Z_p \) halkasında yer alan kuaterniyon halkaları üzerindeki doğrusal kodların yapısını incelemektedir. Burada \( H_p = Z_p + Z_p i + Z_p j + Z_p k \) olup, \( p \) tek bir asal sayı, \( i^2 = j^2 = k^2 = p - 1 \) ve \( ij = (p - 1)ji = k \) şeklinde tanımlanmıştır. \( Z_p \) üzerindeki kuaterniyon halkalarının, merkezî ve birbirine dik idempotent bir çift seçimine bağlı olarak, \( Z_p + iZ_p \) (veya \( Z_p + jZ_p \) ya da \( Z_p + kZ_p \)) şeklinde iki kısma ayrıldığı gösterilmiştir. \( p \equiv 3 \pmod{4} \) olacak şekilde tek bir asal sayı olmak üzere, \( H_p \) üzerindeki devirli (cyclic) ve \( \lambda \)-constacyclic kodların yapıları belirlenmiş, bazı örnekler verilmiş ve doğrusal kodların dual kodları incelenmiştir. Son olarak, \( H_p \) üzerindeki devirli ve \( \lambda \)-constacyclic kodlardan kuantum kodlarının parametreleri elde edilmiştir.

References

  • Akbiyik, S., & Ersoy, B. A. (2017). Cyclic codes over a non-commutative ring. In 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE.
  • Aristidou, M., & Demetre, D. (2012). Idempotent elements in quaternion rings over Zp. International Journal of Algebra, 6, 249–254.
  • Calderbank, A. R., Rains, E. M., Shor, P. M., & Sloane, N. J. A. (1998). Quantum error correction via codes GF(4). IEEE Transactions on Information Theory, 44, 1369–1387.
  • Cheraghpour, H., & Ghosseiri, M. N. (2019). On the idempotents, nilpotents, units and zero-divisors of finite rings. Linear and Multilinear Algebra, 67, 327–336.
  • Dougherty, S. T., & Andre, L. (2016). Euclidean self-dual codes over non-commutative Frobenius rings. Applicable Algebra in Engineering, Communication and Computing, 27, 185–203.
  • Kandasamy, W. B. V. (2000). On the finite Quaternion rings and skew fields. Acta Ciencia Indica, XXVI(2), 133–135.
  • Miguel, C. J., & Serodio, R. (2011). On the structure of quaternion rings over Zp. International Journal of Algebra, 5, 1313–1325.
  • Tan, P. L., & Sison, V. (2021). Quaternions over Galois rings and their codes. arXiv. https://arxiv. org/abs/2109.00735
There are 8 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Abdullah Dertli 0000-0001-8687-032X

Yasemin Çengellenmiş 0000-0002-8133-9836

Publication Date October 19, 2025
Submission Date March 9, 2025
Acceptance Date September 29, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Dertli, A., & Çengellenmiş, Y. (2025). On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications. Journal of Universal Mathematics, 8(2), 93-103. https://doi.org/10.33773/jum.1654134
AMA Dertli A, Çengellenmiş Y. On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications. JUM. October 2025;8(2):93-103. doi:10.33773/jum.1654134
Chicago Dertli, Abdullah, and Yasemin Çengellenmiş. “On the Cyclic And-Constacyclic Codes over the Quaternion Rings and Their Applications”. Journal of Universal Mathematics 8, no. 2 (October 2025): 93-103. https://doi.org/10.33773/jum.1654134.
EndNote Dertli A, Çengellenmiş Y (October 1, 2025) On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications. Journal of Universal Mathematics 8 2 93–103.
IEEE A. Dertli and Y. Çengellenmiş, “On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications”, JUM, vol. 8, no. 2, pp. 93–103, 2025, doi: 10.33773/jum.1654134.
ISNAD Dertli, Abdullah - Çengellenmiş, Yasemin. “On the Cyclic And-Constacyclic Codes over the Quaternion Rings and Their Applications”. Journal of Universal Mathematics 8/2 (October2025), 93-103. https://doi.org/10.33773/jum.1654134.
JAMA Dertli A, Çengellenmiş Y. On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications. JUM. 2025;8:93–103.
MLA Dertli, Abdullah and Yasemin Çengellenmiş. “On the Cyclic And-Constacyclic Codes over the Quaternion Rings and Their Applications”. Journal of Universal Mathematics, vol. 8, no. 2, 2025, pp. 93-103, doi:10.33773/jum.1654134.
Vancouver Dertli A, Çengellenmiş Y. On the Cyclic and-Constacyclic Codes over the Quaternion Rings and Their Applications. JUM. 2025;8(2):93-103.