BibTex RIS Cite

Ağır Metal Stresine Maruz Kalan Domatesin Yağ Asidi Dağılım Cevapları

Year 2019, Volume: 9 Issue: 1, 88 - 96, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1221

Abstract

Tarımsal alanlarda ağır metallerin birikimin bitkilerde fizyolojik ve biyokimyasal değişimlere yol açarak oksidatif strese neden olur. Oksidatif hasara maruz kalan bitkiler için yağ asitlerinin düzenlenmesi adaptasyon mekanizması olarak düşünülür. Mevcut çalışmada, artan dozda ağır metale maruz kalan domates bitkisi yapraklarında yağ asidi kompozisyonundaki değişimleri inceledik. Ağır metal uygulaması yağ asidi dağılımını değiştirdi ve α-linoleik asit, palmitik asit ve linoleik asit yüzde dağılım bakımından sırasıyla temel yağ asitleridir. Araşidik asit, behenik asit, lignoserik asit ve docosaheksaenoik asit yüzdeleri domates yapraklarında açık şekilde artmıştır. Kontrol bitkilerine kıyasla linoleik asit ve palmitoleik asit seviyeleri ağır metal uygulamasında önemli derecede azalmıştır. Stearik asit ve oleik asit metil ester içeriği uygulanan ağır metal tip ve dozuna bağlı olarak değişirken, α-linolenik asit ve palmitik asit miktarı Cu ve Pb uygulamasında değişmemiştir. Fakat Cd uygulaması domates yapraklarında α-linolenik asit yüzdesini hafif şekilde artırmıştır. Lipid peroksidasyon içeriği tüm ağır metal maruziyetlerinde önemli şekilde artmıştır. Kontrol grubuyla karşılaştırıldığında, ağır metaller araşidik asit, behenik asit ve lignoserik asit gibi doymuş yağ asidi içeriğini artırırken, doymamış yağ asitlerinden olan linoleik asit ve palmitoleik asit azalmıştır. Yağ asidi yüzdelerindeki bu değişimler lipid peroksidasyonundaki artışla ilişkili olabilir

References

  • Ahmad, M., Nangyal, H., Sherwani, K., Islam, Z., Shah, SH. 2013. Effect of heat stress on fatty acids profiles of Aloe vera and Bryophyllum pinnatum leaves. World Appl. Sci. J., 28:1592– 1596.
  • Bettaieb, I., Zakhama, N., Wannes, WA., Kchouk, ME., Marzouk, B. 2009. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic., 120:271– 275.
  • Bligh, EG., Dyer, WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37:911– 917.
  • Catalá, A. 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids, 157:1–11.
  • Chaffai, R., Elhammadi, MA., Seybou, TN., Tekitek, A., Marzouk, B., El Ferjani, E. 2007. Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper. J. Agronomy. Crop. Science., 193:207–217.
  • Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., Liu, H. 2014. Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System. J. Plant Growth. Regul., 33:671–682.
  • Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limam, F., Ghorbel, MH., Chaïbi, W. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7:358–368.
  • Gajewska, E., Bernat, P., Dlugoński, J., Sklodowska, M. 2012. Effect of Nickel on Membrane Integrity, Lipid Peroxidation and Fatty Acid Composition in Wheat Seedlings. J. Agronomy. Crop. Science., 198:286–294.
  • Gonçaalves, JF., Becker, AG., Cargnelutti, D., Tabaldi, LA., Pereira, LB., Battisti, V., Spanevello, RM., Morsch, VM., Nicoloso, FT., Schetinger, MRC. 2007. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz. J. Plant Physiol., 19:223– 232.
  • Guédard, ML., Faure, O., Bessoule, JJ. 2012. Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76:54–59.
  • Guo, TR., Zhang, GP., Zhang, YH. 2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf. B: Biointerfaces, 57:182–188.
  • Kisa, D., Elmastaş, M., Öztürk, L., Kayır, Ö. 2016. Responses of the phenolic compounds of Zea mays under heavy metal stress. J. Appl. Biol. Chem., 59:813–820.
  • Li, X., Yang, Y., Jia, L., Chen, H., Wei, X. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf., 89:150–157.
  • Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, MK. 2012. Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz. J. Plant Physiol., 24:203–212.
  • Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. 2012. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8:78–89.
  • Nouairi, I., Ammar, WB., Ben,YN., Daoud, DBM., Ghorbal, MH., Zarrouk, M. 2006a. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci., 170:511–519.
  • Nouairi, I., Ghnaya, T., Ben, YN., Zarrouk, M., Habib, GM. 2006b. Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J. Plant Physiol., 163:1198–1202.
  • Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. 2005. Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant, 125:356–364.
  • Rahayu, SM., Suseno, SH., Ibrahim, B. 2014. Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pak. J. Nutr., 13:480– 485.
  • Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z. 2010. Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol. Plant., 32:169– 175.
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, HS., Shekar-Shetty, H., Savithri, HS., Sudhakar, C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141:1–9.
  • Sun, RL., Zhou, QX., Sun, FH., Jin, CX. 2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60:468–476.
  • Tanyolaç, D., Ekmekçi, Y., Ünalan, Ş. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere, 67:89–98. Upchurch, R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett., 30:967–977.
  • Verdoni, N., Mench, M., Cassagne, C., Bessoule, JJ. 2001. Fatty acid composition of tomato leaves as biomarkers of metalcontaminated soils. Environ. Toxicol. Chem., 20:382–388.
  • Walley, JW., Kliebenstein, DJ., Bostock, RM., Dehesh, K. 2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16:520–526.
  • Zemanová, V., Pavlík, M., Pavlíková, D., Kyjaková, P. 2015. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ., 61:285–290.

Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress

Year 2019, Volume: 9 Issue: 1, 88 - 96, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1221

Abstract

The accumulation of heavy metals in the agricultural environments causes the oxidative stress in leading physiological and biochemical alterations in the plants. Regulation of fatty acids is considered as an adaptive mechanism for plants exposed to oxidative damages. In the present study, we investigated the changes of fatty acid composition with GC in the leaves of tomato subjected to increasing doses of heavy metals. The exposures of heavy metals changed the fatty acid compositions and α-linoleic acid, palmitic acid and linoleic acid were the main fatty acids in respect to percentage, respectively. The percentages of arachidic acid, behenic acid, lignoceric acid and docosahexaenoic acid clearly increased in leaves of tomato. The level of lionoleic acid and palmitoleic acid significantly reduced in all application of heavy metals compared to control plants. The content of stearic acid and oleic acid methyl ester changed depending on heavy metal types and doses while the quantity of α-linolenic acid and palmitic acid remained unchanged by the treatment of Cu and Pb, but the application of Cd slightly increased the percentage of α-linolenic acid in tomato leaves. The content of lipid peroxidation significantly increased in all exposures of heavy metal. The exposures of heavy metal increased the content of saturated fatty acid like arachidic acid, behenic acid and lignoceric acid, while heavy metals decreased lionoleic acid and palmitoleic acid which belong to unsaturated fatty acid compared to control plants. These changes in the fatty acid percentages may be related with the increases of lipid peroxidation.

References

  • Ahmad, M., Nangyal, H., Sherwani, K., Islam, Z., Shah, SH. 2013. Effect of heat stress on fatty acids profiles of Aloe vera and Bryophyllum pinnatum leaves. World Appl. Sci. J., 28:1592– 1596.
  • Bettaieb, I., Zakhama, N., Wannes, WA., Kchouk, ME., Marzouk, B. 2009. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic., 120:271– 275.
  • Bligh, EG., Dyer, WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37:911– 917.
  • Catalá, A. 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids, 157:1–11.
  • Chaffai, R., Elhammadi, MA., Seybou, TN., Tekitek, A., Marzouk, B., El Ferjani, E. 2007. Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper. J. Agronomy. Crop. Science., 193:207–217.
  • Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., Liu, H. 2014. Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System. J. Plant Growth. Regul., 33:671–682.
  • Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limam, F., Ghorbel, MH., Chaïbi, W. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7:358–368.
  • Gajewska, E., Bernat, P., Dlugoński, J., Sklodowska, M. 2012. Effect of Nickel on Membrane Integrity, Lipid Peroxidation and Fatty Acid Composition in Wheat Seedlings. J. Agronomy. Crop. Science., 198:286–294.
  • Gonçaalves, JF., Becker, AG., Cargnelutti, D., Tabaldi, LA., Pereira, LB., Battisti, V., Spanevello, RM., Morsch, VM., Nicoloso, FT., Schetinger, MRC. 2007. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz. J. Plant Physiol., 19:223– 232.
  • Guédard, ML., Faure, O., Bessoule, JJ. 2012. Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environ. Exp. Bot., 76:54–59.
  • Guo, TR., Zhang, GP., Zhang, YH. 2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf. B: Biointerfaces, 57:182–188.
  • Kisa, D., Elmastaş, M., Öztürk, L., Kayır, Ö. 2016. Responses of the phenolic compounds of Zea mays under heavy metal stress. J. Appl. Biol. Chem., 59:813–820.
  • Li, X., Yang, Y., Jia, L., Chen, H., Wei, X. 2013. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf., 89:150–157.
  • Maiti, S., Ghosh, N., Mandal, C., Das, K., Dey, N., Adak, MK. 2012. Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz. J. Plant Physiol., 24:203–212.
  • Moradkhani, S., Ali, R., Nejad, K., Dilmaghani, K. 2012. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower. J. Stress Physiol. Biochem., 8:78–89.
  • Nouairi, I., Ammar, WB., Ben,YN., Daoud, DBM., Ghorbal, MH., Zarrouk, M. 2006a. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci., 170:511–519.
  • Nouairi, I., Ghnaya, T., Ben, YN., Zarrouk, M., Habib, GM. 2006b. Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J. Plant Physiol., 163:1198–1202.
  • Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. 2005. Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol. Plant, 125:356–364.
  • Rahayu, SM., Suseno, SH., Ibrahim, B. 2014. Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pak. J. Nutr., 13:480– 485.
  • Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z. 2010. Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol. Plant., 32:169– 175.
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, HS., Shekar-Shetty, H., Savithri, HS., Sudhakar, C. 1999. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci., 141:1–9.
  • Sun, RL., Zhou, QX., Sun, FH., Jin, CX. 2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ. Exp. Bot., 60:468–476.
  • Tanyolaç, D., Ekmekçi, Y., Ünalan, Ş. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere, 67:89–98. Upchurch, R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett., 30:967–977.
  • Verdoni, N., Mench, M., Cassagne, C., Bessoule, JJ. 2001. Fatty acid composition of tomato leaves as biomarkers of metalcontaminated soils. Environ. Toxicol. Chem., 20:382–388.
  • Walley, JW., Kliebenstein, DJ., Bostock, RM., Dehesh, K. 2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16:520–526.
  • Zemanová, V., Pavlík, M., Pavlíková, D., Kyjaková, P. 2015. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ., 61:285–290.
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Dursun Kısa This is me

Lokman Öztürk This is me

Publication Date January 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Kısa, D., & Öztürk, L. (2019). Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress. Karaelmas Fen Ve Mühendislik Dergisi, 9(1), 88-96. https://doi.org/10.7212/zkufbd.v9i1.1221
AMA Kısa D, Öztürk L. Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress. Karaelmas Fen ve Mühendislik Dergisi. January 2019;9(1):88-96. doi:10.7212/zkufbd.v9i1.1221
Chicago Kısa, Dursun, and Lokman Öztürk. “Responses of the Fatty Acid Composition of Solanum Lycopersicum Exposed to Heavy Metal Stress”. Karaelmas Fen Ve Mühendislik Dergisi 9, no. 1 (January 2019): 88-96. https://doi.org/10.7212/zkufbd.v9i1.1221.
EndNote Kısa D, Öztürk L (January 1, 2019) Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress. Karaelmas Fen ve Mühendislik Dergisi 9 1 88–96.
IEEE D. Kısa and L. Öztürk, “Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress”, Karaelmas Fen ve Mühendislik Dergisi, vol. 9, no. 1, pp. 88–96, 2019, doi: 10.7212/zkufbd.v9i1.1221.
ISNAD Kısa, Dursun - Öztürk, Lokman. “Responses of the Fatty Acid Composition of Solanum Lycopersicum Exposed to Heavy Metal Stress”. Karaelmas Fen ve Mühendislik Dergisi 9/1 (January 2019), 88-96. https://doi.org/10.7212/zkufbd.v9i1.1221.
JAMA Kısa D, Öztürk L. Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress. Karaelmas Fen ve Mühendislik Dergisi. 2019;9:88–96.
MLA Kısa, Dursun and Lokman Öztürk. “Responses of the Fatty Acid Composition of Solanum Lycopersicum Exposed to Heavy Metal Stress”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 9, no. 1, 2019, pp. 88-96, doi:10.7212/zkufbd.v9i1.1221.
Vancouver Kısa D, Öztürk L. Responses of the fatty acid composition of Solanum lycopersicum exposed to heavy metal stress. Karaelmas Fen ve Mühendislik Dergisi. 2019;9(1):88-96.