BibTex RIS Cite

İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi

Year 2019, Volume: 9 Issue: 1, 130 - 141, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1428

Abstract

Dikgen-Olmayan Çoklu Erişim Non-orthogonal Multiple Access -NOMA 5G ve ötesi ağlar için önemli isterler olan kitlesel iletişimi destekleyebilme ve yüksek spektral verimlilik sağlayabilme potansiyeli nedeniyle yeni nesil kablosuz iletişim için önem arz etmektedir. NOMA’da vericiye daha yakın konumda bulunan kullanıcılar -hücre içi kullanıcılar-, vericiye daha uzak konumda bulunan -hücre kenarı- kullanıcıların sembollerini bildiği için, NOMA’nın en büyük avantajlarından birisi de işbirlikli haberleşmeye uygun olmasıdır. Bu çalışmada işbirlikli-NOMA olarak adlandırılan bu sistemler için bit hata başarımları Nakagami-m sönümlemeli kanallarda analiz edilmiştir. İşbirlikli-NOMA için uçtan-uca bit hata olasılığı ifadesi kapalı formda elde edilmiştir. Elde edilen ifadeler Monte Carlo benzetimleri ile doğrulanarak sistem parametrelerinin İşbirlikli-NOMA’nın hata başarımı üzerindeki etkileri incelenmiştir

References

  • 1. 3GPP 2016. RP-160680:Downlink multiuser superposition transmission for LTE.
  • 2. Ali, MS., Hossain, E., Kim, DI. 2017. Non-Orthogonal Multiple Access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation, IEEE Access, 5: 565–577.
  • 3. Ali, MS., Tabassum, H., Hossain, E. 2016. Dynamic user clustering and power allocation for uplink and downlink nonorthogonal multiple access (NOMA) systems, IEEE Access, 4: 6325–6343.
  • 4. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., Nakamura, T. 2013. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. Int. Symp. Intell. Signal Process. Commun. Syst., 770–774.
  • 5. Boccardi, F., Heath, R., Lozano, A., Marzetta, T., Popovski, P. 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag., 52:74–80.
  • 6. Choi, J. 2016. On the power allocation for MIMO-NOMA systems with layered transmissions, IEEE Trans. Wirel. Commun., 15: 3226–3237.
  • 7. Cui, J., Ding, Z., Fan, P. 2016. A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Process. Lett., 23: 1226–1230.
  • 8. Cui, J., Liu, Y., Ding, Z., Fan, P., Nallanathan, A. 2017. Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Trans. on Wirel. Commun., 17: 1–30.
  • 9. Dai, L., Wang, B., Yuan, Y., Han, SICL., Wang, Z. 2015. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53: 74–81.
  • 10. Ding, Z., Adachi, F., Poor, HV. 2016. The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun., 15: 537–552.
  • 11. Ding, Z., Fan, P., Poor, HV. 2016. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol., 65: 6010–6023.
  • 12. Ding, Z., Fan, P., Poor, HV. 2017. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5: 7667– 7681.
  • 13. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., ChihLin, I., Poor, HV. 2017. Application of non-orthogonal multiple access in LTE and 5G Networks. IEEE Commun. Mag., 55: 185–191.
  • 14. Ding, Z., Peng, M., Poor, HV. 2015. Cooperative Nonorthogonal multiple access in 5G systems. IEEE Commun. Lett., 19: 1462–1465.
  • 15. Ding, Z., Yang, Z., Fan, P., Poor, HV. 2014. On the Performance of non-orthogonal multiple access in 5G Systems with randomly deployed users. IEEE Signal Process. Lett., 21: 1501–1505.
  • 16. Gökçeli, S., Kucur, O., Aldababsa, M., Toka, M., Kurt, GK. 2018, A Tutorial on nonorthogonal multiple access for 5G and beyond. Wirel. Commun. Mob. Comput., 2018: 1–24.
  • 17. Gradshteyn, IS., Ryzhik, IM. 1994. Table of integrals, series, and products, 5th ed., Academic Press, San Diego: CA, USA, 1220 pp.
  • 18. Guo, J., Wang, X., Yang, J., Zheng, J., Zhao, B. 2016. User pairing and power allocation for downlink non-orthogonal multiple access. IEEE Globecom., pp: 0–5.
  • 19. Herhold, P., Zimmermann, E., Fettweis, G. 2004. A simple cooperative extension to wireless relaying. Int. Zurich Semin. Digit. Commun., 36–39.
  • 20. Higuchi, K., Kishiyama, Y. 2013. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. IEEE Veh. Technol. Conf.
  • 21. Hossain, E., Hasan, M. 2015. 5G Cellular: Key enabling technologies and research challenges. IEEE Instrum. Meas. Mag., 11–21.
  • 22. Ikki, S., Ahmed, MH. 2007. Performance of decode-andforward cooperative diversity networks over nakagami-m fading channels. IEEE Globecom., 4328–4333.
  • 23. Jiao, R., Dai, L., Zhang, J., Mackenzie, R., Hao, M. 2017. On the performance of NOMA-Based cooperative relaying systems over rician fading channels. IEEE Trans. Veh. Technol., 66:11409–11413.
  • 24. Kara, F., Kaya, H. 2018. BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Commun., 12:1834–1844.
  • 25. Kara, F., Kaya, H. 2018. Derivation of the closed-form BER expressions for DL-NOMA over Nakagami-m fading channels. 26th Signal Process. Commun. Appl. Conf.
  • 26. Kara, F., Kaya, H. 2019. The error performance analysis of the decode-forward relay-aided-NOMA systems and a power allocation scheme for user fairness, J. Fac. Eng. Archit. Gazi Univ., (in press).
  • 27. Kara, F., Kaya, H. 2019. On the error performance of Cooperative-NOMA with statistical CSIT. IEEE Commun. Lett., 23:128–131.
  • 28. Kara, F., Kaya, H. 2019. Threshold-based selective Cooperative-NOMA. IEEE Commun. Lett., 99:1, 2019
  • 29. Kim, JB., Lee, IH. 2015. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett., 19:1949–1952.
  • 30. Kizilirmak, RC., Rowell, CR., Uysal, M. 2015. Nonorthogonal multiple access (NOMA) for indoor visible light communications. Int. Work. Opt. Wirel. Commun., pp: 98–101.
  • 31. Liu, F., Mahonen, P., Petrova, M. 2015. Proportional fairness-based user pairing and power allocation for nonorthogonal multiple access. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., pp: 1127–1131.
  • 32. Liu, H., Ding, Z., Kim, KJ., Kwak, KS., Poor, HV. 2018. Decode-and-Forward relaying for cooperative NOMA systems with direct links, IEEE Trans. Wirel. Commun., 17:8077–8093.
  • 33. Liu, Y., Ding, Z., Elkashlan, M., Yuan, J. 2016, Nonorthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol., 65: 10152–10157.
  • 34. Liu, Y., Pan, G., Zhang, H., Song, M. 2016, Hybrid decodeforward amplify-forward relaying with non-orthogonal multiple access. IEEE Access, 4: 4912–4921.
  • 35. Marshoud, H., Kapinas, V. M., Karagiannidis, GK., Muhaidat, S. 2015. Non-orthogonal multiple access for visible light communications, IEEE Photonics Technol. Lett., 28: 51–54.
  • 36. Onat, F. A., Adinoyi, A., Fan, Y., Yanikomeroglu, H., Thompson, JS., Marsland, I. D. 2008. Threshold selection for SNR-based selective digital relaying in cooperative wireless networks. IEEE Trans. Wirel. Commun., 7: 4226–4237.
  • 37. Oviedo, J. A., Sadjadpour, HR. 2017. A fair power allocation approach to NOMA in multiuser SISO systems, IEEE Trans. Veh. Technol., 66:7974–7985.
  • 38. Proakis, JG. 2008. Digital communications, 5th ed., McGrawHill, New York, USA, 1170 pp.
  • 39. Ross, S. 1988. A first course in probability, Prentice Hall, New Jersey, USA, 545 pp.
  • 40. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T. 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., pp: 611–615.
  • 41. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., Poor, HV. 2017. Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Commun. Mag., 2017: 176–183.
  • 42. Simon, M. K., Alouini, MS. 2004. Digital communication over fading channels, John Wiley & Sons, Inc., Hoboken, NJ, USA, 936 pp.
  • 43. Sun, Q., Han, S., I, CL., Pan, Z. 2015. On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett., 4: 405–408.
  • 44. Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N. 2016. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun., 15: 7244–7257.
  • 45. Zhang, Y., Yang, Z., Feng, Y., Yan, S. 2018. Performance analysis of cooperative relaying systems with power-domain non-orthogonal multiple access. IEEE Access, 6: 39839–39848.
  • 46. Zhong, C., Zhang, Z. 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett., 20: 2478–2481.

Error Analysis of Cooperative-Non-Orthogonal Multiple Access NOMA over Nakagami-m Fading Channels

Year 2019, Volume: 9 Issue: 1, 130 - 141, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1428

Abstract

Non-Orthogonal Multiple Access NOMA has a key role for future wireless networks because of its potential for supporting massive connectivity and achieving high spectral efficiency which are demands of top priority for 5G and beyond. Another major advantage of NOMA is that cooperative communication can be applied within NOMA since the intra-cell users -close to the base station- have the priori knowledge of cell-edge users’ -far from the base station- symbols. In this paper, we analyze error performance of these systems which are called as cooperative-NOMA over Nakagami-m fading channels. The end-to-end bit error probability for cooperativeNOMA is derived in closed-form. Then, the derived expressions are validated via Monte Carlo simulations and we investigate the effect of the system parameters on the error performance of cooperative-NOMA.

References

  • 1. 3GPP 2016. RP-160680:Downlink multiuser superposition transmission for LTE.
  • 2. Ali, MS., Hossain, E., Kim, DI. 2017. Non-Orthogonal Multiple Access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation, IEEE Access, 5: 565–577.
  • 3. Ali, MS., Tabassum, H., Hossain, E. 2016. Dynamic user clustering and power allocation for uplink and downlink nonorthogonal multiple access (NOMA) systems, IEEE Access, 4: 6325–6343.
  • 4. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., Nakamura, T. 2013. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. Int. Symp. Intell. Signal Process. Commun. Syst., 770–774.
  • 5. Boccardi, F., Heath, R., Lozano, A., Marzetta, T., Popovski, P. 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag., 52:74–80.
  • 6. Choi, J. 2016. On the power allocation for MIMO-NOMA systems with layered transmissions, IEEE Trans. Wirel. Commun., 15: 3226–3237.
  • 7. Cui, J., Ding, Z., Fan, P. 2016. A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Process. Lett., 23: 1226–1230.
  • 8. Cui, J., Liu, Y., Ding, Z., Fan, P., Nallanathan, A. 2017. Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Trans. on Wirel. Commun., 17: 1–30.
  • 9. Dai, L., Wang, B., Yuan, Y., Han, SICL., Wang, Z. 2015. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53: 74–81.
  • 10. Ding, Z., Adachi, F., Poor, HV. 2016. The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun., 15: 537–552.
  • 11. Ding, Z., Fan, P., Poor, HV. 2016. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol., 65: 6010–6023.
  • 12. Ding, Z., Fan, P., Poor, HV. 2017. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5: 7667– 7681.
  • 13. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., ChihLin, I., Poor, HV. 2017. Application of non-orthogonal multiple access in LTE and 5G Networks. IEEE Commun. Mag., 55: 185–191.
  • 14. Ding, Z., Peng, M., Poor, HV. 2015. Cooperative Nonorthogonal multiple access in 5G systems. IEEE Commun. Lett., 19: 1462–1465.
  • 15. Ding, Z., Yang, Z., Fan, P., Poor, HV. 2014. On the Performance of non-orthogonal multiple access in 5G Systems with randomly deployed users. IEEE Signal Process. Lett., 21: 1501–1505.
  • 16. Gökçeli, S., Kucur, O., Aldababsa, M., Toka, M., Kurt, GK. 2018, A Tutorial on nonorthogonal multiple access for 5G and beyond. Wirel. Commun. Mob. Comput., 2018: 1–24.
  • 17. Gradshteyn, IS., Ryzhik, IM. 1994. Table of integrals, series, and products, 5th ed., Academic Press, San Diego: CA, USA, 1220 pp.
  • 18. Guo, J., Wang, X., Yang, J., Zheng, J., Zhao, B. 2016. User pairing and power allocation for downlink non-orthogonal multiple access. IEEE Globecom., pp: 0–5.
  • 19. Herhold, P., Zimmermann, E., Fettweis, G. 2004. A simple cooperative extension to wireless relaying. Int. Zurich Semin. Digit. Commun., 36–39.
  • 20. Higuchi, K., Kishiyama, Y. 2013. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. IEEE Veh. Technol. Conf.
  • 21. Hossain, E., Hasan, M. 2015. 5G Cellular: Key enabling technologies and research challenges. IEEE Instrum. Meas. Mag., 11–21.
  • 22. Ikki, S., Ahmed, MH. 2007. Performance of decode-andforward cooperative diversity networks over nakagami-m fading channels. IEEE Globecom., 4328–4333.
  • 23. Jiao, R., Dai, L., Zhang, J., Mackenzie, R., Hao, M. 2017. On the performance of NOMA-Based cooperative relaying systems over rician fading channels. IEEE Trans. Veh. Technol., 66:11409–11413.
  • 24. Kara, F., Kaya, H. 2018. BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Commun., 12:1834–1844.
  • 25. Kara, F., Kaya, H. 2018. Derivation of the closed-form BER expressions for DL-NOMA over Nakagami-m fading channels. 26th Signal Process. Commun. Appl. Conf.
  • 26. Kara, F., Kaya, H. 2019. The error performance analysis of the decode-forward relay-aided-NOMA systems and a power allocation scheme for user fairness, J. Fac. Eng. Archit. Gazi Univ., (in press).
  • 27. Kara, F., Kaya, H. 2019. On the error performance of Cooperative-NOMA with statistical CSIT. IEEE Commun. Lett., 23:128–131.
  • 28. Kara, F., Kaya, H. 2019. Threshold-based selective Cooperative-NOMA. IEEE Commun. Lett., 99:1, 2019
  • 29. Kim, JB., Lee, IH. 2015. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett., 19:1949–1952.
  • 30. Kizilirmak, RC., Rowell, CR., Uysal, M. 2015. Nonorthogonal multiple access (NOMA) for indoor visible light communications. Int. Work. Opt. Wirel. Commun., pp: 98–101.
  • 31. Liu, F., Mahonen, P., Petrova, M. 2015. Proportional fairness-based user pairing and power allocation for nonorthogonal multiple access. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., pp: 1127–1131.
  • 32. Liu, H., Ding, Z., Kim, KJ., Kwak, KS., Poor, HV. 2018. Decode-and-Forward relaying for cooperative NOMA systems with direct links, IEEE Trans. Wirel. Commun., 17:8077–8093.
  • 33. Liu, Y., Ding, Z., Elkashlan, M., Yuan, J. 2016, Nonorthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans. Veh. Technol., 65: 10152–10157.
  • 34. Liu, Y., Pan, G., Zhang, H., Song, M. 2016, Hybrid decodeforward amplify-forward relaying with non-orthogonal multiple access. IEEE Access, 4: 4912–4921.
  • 35. Marshoud, H., Kapinas, V. M., Karagiannidis, GK., Muhaidat, S. 2015. Non-orthogonal multiple access for visible light communications, IEEE Photonics Technol. Lett., 28: 51–54.
  • 36. Onat, F. A., Adinoyi, A., Fan, Y., Yanikomeroglu, H., Thompson, JS., Marsland, I. D. 2008. Threshold selection for SNR-based selective digital relaying in cooperative wireless networks. IEEE Trans. Wirel. Commun., 7: 4226–4237.
  • 37. Oviedo, J. A., Sadjadpour, HR. 2017. A fair power allocation approach to NOMA in multiuser SISO systems, IEEE Trans. Veh. Technol., 66:7974–7985.
  • 38. Proakis, JG. 2008. Digital communications, 5th ed., McGrawHill, New York, USA, 1170 pp.
  • 39. Ross, S. 1988. A first course in probability, Prentice Hall, New Jersey, USA, 545 pp.
  • 40. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T. 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., pp: 611–615.
  • 41. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., Poor, HV. 2017. Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Commun. Mag., 2017: 176–183.
  • 42. Simon, M. K., Alouini, MS. 2004. Digital communication over fading channels, John Wiley & Sons, Inc., Hoboken, NJ, USA, 936 pp.
  • 43. Sun, Q., Han, S., I, CL., Pan, Z. 2015. On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett., 4: 405–408.
  • 44. Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N. 2016. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun., 15: 7244–7257.
  • 45. Zhang, Y., Yang, Z., Feng, Y., Yan, S. 2018. Performance analysis of cooperative relaying systems with power-domain non-orthogonal multiple access. IEEE Access, 6: 39839–39848.
  • 46. Zhong, C., Zhang, Z. 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett., 20: 2478–2481.
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ferdi Kara This is me

Hakan Kaya This is me

Publication Date January 1, 2019
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Kara, F., & Kaya, H. (2019). İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi. Karaelmas Fen Ve Mühendislik Dergisi, 9(1), 130-141. https://doi.org/10.7212/zkufbd.v9i1.1428
AMA Kara F, Kaya H. İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi. Karaelmas Fen ve Mühendislik Dergisi. January 2019;9(1):130-141. doi:10.7212/zkufbd.v9i1.1428
Chicago Kara, Ferdi, and Hakan Kaya. “İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-M Sönümlemeli Kanallardaki Hata Analizi”. Karaelmas Fen Ve Mühendislik Dergisi 9, no. 1 (January 2019): 130-41. https://doi.org/10.7212/zkufbd.v9i1.1428.
EndNote Kara F, Kaya H (January 1, 2019) İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi. Karaelmas Fen ve Mühendislik Dergisi 9 1 130–141.
IEEE F. Kara and H. Kaya, “İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 9, no. 1, pp. 130–141, 2019, doi: 10.7212/zkufbd.v9i1.1428.
ISNAD Kara, Ferdi - Kaya, Hakan. “İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-M Sönümlemeli Kanallardaki Hata Analizi”. Karaelmas Fen ve Mühendislik Dergisi 9/1 (January 2019), 130-141. https://doi.org/10.7212/zkufbd.v9i1.1428.
JAMA Kara F, Kaya H. İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi. Karaelmas Fen ve Mühendislik Dergisi. 2019;9:130–141.
MLA Kara, Ferdi and Hakan Kaya. “İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-M Sönümlemeli Kanallardaki Hata Analizi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 9, no. 1, 2019, pp. 130-41, doi:10.7212/zkufbd.v9i1.1428.
Vancouver Kara F, Kaya H. İşbirlikli-Dikgen Olmayan Çoklu Erişimin Nakagami-m Sönümlemeli Kanallardaki Hata Analizi. Karaelmas Fen ve Mühendislik Dergisi. 2019;9(1):130-41.