BibTex RIS Kaynak Göster

Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı

Yıl 2018, Cilt: 8 Sayı: 2, 523 - 535, 01.06.2018

Öz

Türkiye’nin önemli fay zonlarından biri olan Doğu Anadolu Fay Zonu DAFZ , içinde bulunduğumuz yüzyılda çok aktif görünmemesine rağmen, tarihsel dönemlerde büyük depremler üretmiş bir fay zonudur. DAFZ’in yakın çevresinde büyük yerleşim birimlerinin bulunması, dolayısıyla gelecekte meydana gelebilecek muhtemel bir depremin yerinin belirlenmesi önem arz etmektedir. Fayların içinde bulundukları gerilme durumları ve komşu faylara olan etkisi Coulomb gerilme kriteri ile modellenebilmekte, gerilmenin arttığı bölgeler tespit edilerek, gelecekte oluşabilecek bir deprem lokasyon olarak değerlendirilebilmektedir. Bu çalışmada DAFZ uzerinde 1822 yılından günümüze kadar meydana gelmiş orta ve büyük ölçekli depremler Coulomb kriteri kullanılarak modellenmiş ve incelenen depremlerin birbirleri ile olan ilişkileri araştırılmıştır. Ayrıca, lehva hareketlerine bağlı meydana gelen tektonik gerilme değişimleri analiz edilerek, bölgede deprem riski oluşturabilecek gerilmenin yüksek olduğu alanlar incelenmiştir. Elde edilen bulgulara göre; modellenen 18 depremden 12 tanesi oluşumları itibariyle gerilme ilişkileri tespit edilmiş ve bir anlamda birbirlerini tetiklemişlerdir. Geçmiş yıllarda araştırmacılar tarafından gerilme artışı saptanan Elazığ-Bingöl arasındaki segmentin 2003 Bingöl ve 2010 Elazığ depremlerinden sonra kısmen deprem riski taşımadıgı da tespit edilmiştir. Inceleme alanında yer alan Kahramanmaraş-Malatya illeri arasında yer alan segmentte hem deprem tetiklemelerinden, hem de tektonik hareketlerden kaynaklı bir gerilme artışı tespit edilerek, deprem riskinin yüksek olduğu alan olarak çalışmada belirlenmiştir

Kaynakça

  • Ambraseys, NN. 1989. Temporary seismic quiescence: SE Turkey. Geophys. J. Int., 96: 311- 331.
  • Ambraseys, NN., Melville, CP. 1995. Historical evidence of faulting in Eastern Anatolia and Northern Syria. Ann. Geofis., 38: 337-344.
  • Ambraseys, NN., Jackson, JA. 1998. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int., 133: 390-406.
  • Arpat, E., Saroglu, F. 1972. The East Anatolian Fault System: thoughts on its development. Bull. Miner. Res. Explor. Ins. Turk., 78: 33-39.
  • Barka, AA., Kadinsky-Cade, K. 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonophysics, 7: 663 – 684
  • Barka, A. 1996. Slip distribution along the North Anatolian Fault associated with the large earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of America, 86: 1238- 1254.
  • Cocco, M., Rice, J. 2002. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geoph., Res., 107:1-17.
  • Dogan, BA., Karakas, 2013. Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 M w 7.1 Van earthquake (East Anatolian Region, Turkey). J. Struct. Geol., 46: 99-114.
  • Eyidoğan, H., Akinci, A. 1999. Site Attenuation and source parameters on the North Anatolian Fault zone, eastern Turkey estimated from the aftershocks of 13 March 1992 Erzincan earthquake. J. Seismol., 3: 363-373.
  • Freed, A., Syed, T., Burgmann, R. 2007. Evolution of stress southern California for the past 200 years from coseismic, postseismic and interseismic processes. Geop. Jour. Int., 169: 1164-1179.
  • Gomberg, J., Ellis, MA. 1994. Topography and tectonics of the New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary element program. J. Geophys. Res., 99: 20299-20310.
  • Grosser, H., Baumbach, M., Berckhemer, H., Baier, B., Karahan, A., Schelle, H., Kruger, F., Paulat, A., Michel, G., Demirtas, R., Gencoglu, S., Yılmaz, R. 1998. The Erzincan (Turkey) earthquake (Ms=6.8) of March 13, 1992, and its aftershock sequence. Pure Appl. Geophys., 152: 465–505.
  • Hubert-Ferrari, A., Armijo, R., King, GCP., Meyer, B., Barka, A. 2002. Morphology, displacement and slip rates along the North Anatolian Fault, Turkey. J. Geophys. Res., 107: 2156- 2202.
  • Kanamori, H., Anderson, DL. 1975. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65: 1073-1095.
  • King, GCP., Stein, R., Lin, J. 1994. Static stress changes and the triggering of earthquakes. Bull. Seism. Soc. Am., 84: 935–953.
  • King, GCP. 2007. Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatis. Geophys., 4: 225-255.
  • Lorenzo Martin, R. 2006. Time dependent crustal deformation after strong earthquakes-rheological model calculations, PhD thesis, Ruhr University.
  • McCloskey, J., Nalbant, SS., Steacy, S. 2005. Indonesian earthquake: Earthquake risk from co-seismic stress. Nature, 434: 291.
  • McKenzie, DP. 1976. The East Anatolian fault: a major structure in eastern Turkey. Earth Planet. Sci. Lett., 29: 189–193.
  • Milkereit, C. 2004. Implications of the 2003 Bingol earthquake for the interaction between the North and East Anatolian faults. Bull. Seismol. Soc. Am., 94: 2400– 2406.
  • Nalbant, SS., Hubert, A., King, GCP. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. J. Geophys. Res., 103: 24469-24486.
  • Nalbant, SS., McCloskey, J., Steacy, S., Barka, A. 2002. Stress accumulation and increased seismic risk in Eastern Turkey. Earth Planet. Sci. Lett., 195: 291–298.
  • Nostro, C., Cocco, M., Belardinelli, M. 1997. Static stress changes in extensional regimes: An application to southern Apennines (Italy). Bull. Seismol. Soc. Am., 87: 234-248.
  • Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82: 1018–1040.
  • Parsons, T., Toda, S., Stein, RS., Barka, A., Dieterich, JH. 2000. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science, 288: 661– 66.
  • Pollitz, FF., Sacks, IS. 2002. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake. Bull. Seismol. Soc. Am., 92: 1487– 1496.
  • Reasenberg, PA., Simpson, RW. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255: 1687–1690.
  • Reilinger, R., McClusky S., Vernant, P. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111: B05411, doi: 10.1029/ 2005JB004051.
  • Steacy, S., Gomberg, J., Cocco, M. 2005. Introduction to special section: Stress transfer, earthquake triggering and timedependant seismic hazard. Journal of Geophysical Research, 110: doi: 10.1029/ 2005JB003692.
  • Stein, R., King, GC., Lin, J. 1992. Change in failure stress on the southern San Andreas Fault system caused by the 1992 M: 7.4 Landers earthquake. Science, 258: 1328-1332.
  • Stein, RS., Barka A., Dieterich, JH. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 128: 594-604.
  • Şaroglu, F., Emre, Ö., Kuşcu, İ. 1992. The East Anatolian fault zone of Turkey. Annal. Tecton., 6: 99-125.
  • Şengör, AMC., Yılmaz, Y. 1981. Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics, 75: 181-241.
  • Tan, O., Pabuccu Z., Tapirdamaz C., Inan, S., Ergintav, S., Eyidogan, H., Aksoy, E., Kuluozturk, F. 2011. Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazığ, Turkey) earthquake (MW = 6.1). Geoph. Res. Let., 38: L11304, doi:10.1029/2011GL047702.
  • Utkucu, M. 2013. 23 October 2011 Van, Eastern Anatolia, earthquake (Mw=7.1) and seismotectonics of Lake Van area. J. Seismol., 17: 783-805.
  • Vergnolle, M., Pollitz, F., Calais, E. 2003. Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia, J. Geophys. Res., 108, doi:10.1029/2002JB002374.

Evaluation of Coulomb Stress Criteria in Earthquake Interactions; East Anatolian Fault Line

Yıl 2018, Cilt: 8 Sayı: 2, 523 - 535, 01.06.2018

Öz

East Anatolian Fault Zone EAFZ , one of Turkey’s major fault zones, is quiescent in this century, was very active and produced major earthquakes in historical periods. In terms of large cities existence along the EAFZ, It is important to identify a possible location of the earthquake that may occur in the future. The stress state in the faults and their possible triggering effect to neighboring faults can be modelled by the Coulomb stress criterion. Hence, the future earthquake location can be determined by detecting the stress increased areas. In this study, moderate and large earthquakes that have been occurred since 1822 were modelled using the Coulomb criterion and their stress interactions were investigated. In addition, by analyzing the tectonic stress changes due to plate motions, the areas where the positive stress change is high, which may create earthquake risk in the region, were also investigated. According to the study findings; 12 of the 18 modelled earthquakes have a causal link between their occurence; it can be concluded that the earthquakes were triggered by their subsequent ones. Furthermore, the segment between Elazığ and Bingöl cities, where the stress increased area examined by the researchers in the previous years, was currently determined to be partially relaxed following the 2003 Bingöl ve 2010 Elazığ earthquakes. In conclusion, the segment between Kahramanmaraş and Malatya cities was determined to be a seismic hazard which poses a high earthquake risk due to both earthquake interactions and tectonic movements modelling.

Kaynakça

  • Ambraseys, NN. 1989. Temporary seismic quiescence: SE Turkey. Geophys. J. Int., 96: 311- 331.
  • Ambraseys, NN., Melville, CP. 1995. Historical evidence of faulting in Eastern Anatolia and Northern Syria. Ann. Geofis., 38: 337-344.
  • Ambraseys, NN., Jackson, JA. 1998. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int., 133: 390-406.
  • Arpat, E., Saroglu, F. 1972. The East Anatolian Fault System: thoughts on its development. Bull. Miner. Res. Explor. Ins. Turk., 78: 33-39.
  • Barka, AA., Kadinsky-Cade, K. 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonophysics, 7: 663 – 684
  • Barka, A. 1996. Slip distribution along the North Anatolian Fault associated with the large earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of America, 86: 1238- 1254.
  • Cocco, M., Rice, J. 2002. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geoph., Res., 107:1-17.
  • Dogan, BA., Karakas, 2013. Geometry of co-seismic surface ruptures and tectonic meaning of the 23 October 2011 M w 7.1 Van earthquake (East Anatolian Region, Turkey). J. Struct. Geol., 46: 99-114.
  • Eyidoğan, H., Akinci, A. 1999. Site Attenuation and source parameters on the North Anatolian Fault zone, eastern Turkey estimated from the aftershocks of 13 March 1992 Erzincan earthquake. J. Seismol., 3: 363-373.
  • Freed, A., Syed, T., Burgmann, R. 2007. Evolution of stress southern California for the past 200 years from coseismic, postseismic and interseismic processes. Geop. Jour. Int., 169: 1164-1179.
  • Gomberg, J., Ellis, MA. 1994. Topography and tectonics of the New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary element program. J. Geophys. Res., 99: 20299-20310.
  • Grosser, H., Baumbach, M., Berckhemer, H., Baier, B., Karahan, A., Schelle, H., Kruger, F., Paulat, A., Michel, G., Demirtas, R., Gencoglu, S., Yılmaz, R. 1998. The Erzincan (Turkey) earthquake (Ms=6.8) of March 13, 1992, and its aftershock sequence. Pure Appl. Geophys., 152: 465–505.
  • Hubert-Ferrari, A., Armijo, R., King, GCP., Meyer, B., Barka, A. 2002. Morphology, displacement and slip rates along the North Anatolian Fault, Turkey. J. Geophys. Res., 107: 2156- 2202.
  • Kanamori, H., Anderson, DL. 1975. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65: 1073-1095.
  • King, GCP., Stein, R., Lin, J. 1994. Static stress changes and the triggering of earthquakes. Bull. Seism. Soc. Am., 84: 935–953.
  • King, GCP. 2007. Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatis. Geophys., 4: 225-255.
  • Lorenzo Martin, R. 2006. Time dependent crustal deformation after strong earthquakes-rheological model calculations, PhD thesis, Ruhr University.
  • McCloskey, J., Nalbant, SS., Steacy, S. 2005. Indonesian earthquake: Earthquake risk from co-seismic stress. Nature, 434: 291.
  • McKenzie, DP. 1976. The East Anatolian fault: a major structure in eastern Turkey. Earth Planet. Sci. Lett., 29: 189–193.
  • Milkereit, C. 2004. Implications of the 2003 Bingol earthquake for the interaction between the North and East Anatolian faults. Bull. Seismol. Soc. Am., 94: 2400– 2406.
  • Nalbant, SS., Hubert, A., King, GCP. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. J. Geophys. Res., 103: 24469-24486.
  • Nalbant, SS., McCloskey, J., Steacy, S., Barka, A. 2002. Stress accumulation and increased seismic risk in Eastern Turkey. Earth Planet. Sci. Lett., 195: 291–298.
  • Nostro, C., Cocco, M., Belardinelli, M. 1997. Static stress changes in extensional regimes: An application to southern Apennines (Italy). Bull. Seismol. Soc. Am., 87: 234-248.
  • Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82: 1018–1040.
  • Parsons, T., Toda, S., Stein, RS., Barka, A., Dieterich, JH. 2000. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science, 288: 661– 66.
  • Pollitz, FF., Sacks, IS. 2002. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake. Bull. Seismol. Soc. Am., 92: 1487– 1496.
  • Reasenberg, PA., Simpson, RW. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255: 1687–1690.
  • Reilinger, R., McClusky S., Vernant, P. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res., 111: B05411, doi: 10.1029/ 2005JB004051.
  • Steacy, S., Gomberg, J., Cocco, M. 2005. Introduction to special section: Stress transfer, earthquake triggering and timedependant seismic hazard. Journal of Geophysical Research, 110: doi: 10.1029/ 2005JB003692.
  • Stein, R., King, GC., Lin, J. 1992. Change in failure stress on the southern San Andreas Fault system caused by the 1992 M: 7.4 Landers earthquake. Science, 258: 1328-1332.
  • Stein, RS., Barka A., Dieterich, JH. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 128: 594-604.
  • Şaroglu, F., Emre, Ö., Kuşcu, İ. 1992. The East Anatolian fault zone of Turkey. Annal. Tecton., 6: 99-125.
  • Şengör, AMC., Yılmaz, Y. 1981. Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics, 75: 181-241.
  • Tan, O., Pabuccu Z., Tapirdamaz C., Inan, S., Ergintav, S., Eyidogan, H., Aksoy, E., Kuluozturk, F. 2011. Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazığ, Turkey) earthquake (MW = 6.1). Geoph. Res. Let., 38: L11304, doi:10.1029/2011GL047702.
  • Utkucu, M. 2013. 23 October 2011 Van, Eastern Anatolia, earthquake (Mw=7.1) and seismotectonics of Lake Van area. J. Seismol., 17: 783-805.
  • Vergnolle, M., Pollitz, F., Calais, E. 2003. Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in western Mongolia, J. Geophys. Res., 108, doi:10.1029/2002JB002374.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Ayse Bengu Sunbul Bu kişi benim

Fatih Sunbul Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2

Kaynak Göster

APA Sunbul, A. B., & Sunbul, F. (2018). Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı. Karaelmas Fen Ve Mühendislik Dergisi, 8(2), 523-535.
AMA Sunbul AB, Sunbul F. Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2018;8(2):523-535.
Chicago Sunbul, Ayse Bengu, ve Fatih Sunbul. “Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı”. Karaelmas Fen Ve Mühendislik Dergisi 8, sy. 2 (Haziran 2018): 523-35.
EndNote Sunbul AB, Sunbul F (01 Haziran 2018) Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı. Karaelmas Fen ve Mühendislik Dergisi 8 2 523–535.
IEEE A. B. Sunbul ve F. Sunbul, “Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı”, Karaelmas Fen ve Mühendislik Dergisi, c. 8, sy. 2, ss. 523–535, 2018.
ISNAD Sunbul, Ayse Bengu - Sunbul, Fatih. “Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı”. Karaelmas Fen ve Mühendislik Dergisi 8/2 (Haziran 2018), 523-535.
JAMA Sunbul AB, Sunbul F. Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:523–535.
MLA Sunbul, Ayse Bengu ve Fatih Sunbul. “Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı”. Karaelmas Fen Ve Mühendislik Dergisi, c. 8, sy. 2, 2018, ss. 523-35.
Vancouver Sunbul AB, Sunbul F. Deprem Etkileşimlerinde Coulomb Gerilme Kriteri Değerlendirmesi; Doğu Anadolu Fay Hattı. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(2):523-35.