BibTex RIS Kaynak Göster

Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi

Yıl 2018, Cilt: 8 Sayı: 1, 324 - 330, 01.01.2018

Öz

Bu çalışmanın amacı, lise öğrencilerinin elektrokimya konusundaki kavramsal anlamalarını belirlemek amacıyla üç aşamalı bir kavram testi geliştirmek, güvenirlik ve geçerlik çalışmalarını yapmaktır. Çalışmaya 268 lise öğrencisi katılmıştır. Öğrencilerin, yaşları 16-20 arasında değişmektedir. Çalışmada üç aşamadan oluşan 29 soruluk bir test kullanılmıştır. Kapsam ve görünüş geçerliği için uzman görüşü alınmıştır. Madde analizlerini yapmak için testin toplam puanlarına göre alt %27 ve üst %27’lik gruplar belirlenmiştir. Yapılan madde analizleri sonucunda madde güçlük indeksleri ve madde ayırıcılık indeksleri tespit edilmiştir. Yapılan bu çalışmalar sonucunda 10 soru testten çıkarılmıştır. Testin bu son hali için tekrar uzman görüşü alınmıştır. Ayrıca kapsam geçerliği için hatalı pozitif ve hatalı negatif değerleri de hesaplanmıştır. Daha sonra yapı geçerliği için istatistiksel analizler yapılmış ve 19 soruluk testin ilk aşaması için güvenirlik katsayısı .833; birinci ve ikinci aşaması için .803, her üç aşaması için; .810 olarak bulunmuştur. Emin olma düzeyinin sadece üçüncü aşama güvenirlik katsayısı ise .753 olarak hesaplanmıştır. Çalışma sonunda Elektrokimya Kavram Testinin güvenilir ve geçerli bir test olduğu kabul edilmiştir

Kaynakça

  • Acar, B., Tarhan, L. 2007. Effect of cooperative learning strategies on students’ understanding of concepts in electrochemistry. Int. J. Sci. Math. Educ., 5: 349-373.
  • Aykutlu, I., Şen, Aİ. 2012. Üç aşamalı test, kavram haritası ve analoji kullanılarak lise öğrencilerinin elektrik akimiz konusundaki kavram yanılgılarının belirlenmesi. Egit Bilim, 37: 275-288.
  • Brandriet, AR. 2014. Investigating Students’ Understandings of the Symbolic, Macroscopic, and Particulate Domains of Oxidation-Reduction and the Development of the Redox Concept Inventory. Doctoral dissertation, Miami University, 423 pp.
  • Caleon, I., Subramaniam, R. 2010. Development and application of a three‐tier diagnostic test to assess secondary students’ understanding of waves. Int. J. Sci. Educ., 32: 939-961.
  • Çalık, M., Ayas, A. 2005. A comparison of level of understanding of eighth‐grade students and science student teachers related to selected chemistry concepts. J. Res. Sci. Teach., 42: 638-667.
  • Çataloğlu, E. 2002. Development and validation of an achievement test in introductory quantum mechanics: The quantum mechanics visualization instrument (QMVI). Doctoral dissertation, The Pennsylvania State University, 211 pp.
  • Çetin Dindar, A. 2012. The effect of 5e learning cycle model on eleventh grade students’ conceptual understanding of acids and bases concepts and motivation to learn chemistry. Doctoral Dissertation, Middle East Technical University, Ankara, 374 pp.
  • Coştu, B., Ayas, A., Niaz, M., Ünal, S., Çalık, M. 2007. Facilitating conceptual change in students’ understanding of boiling concept. J. Sci. Educ. Technol., 16: 524-536.
  • De Jong, O., Acampo, J., Verdonk, A. 1995. Problems in teaching the topic of redox reactions. Actions and conceptions of chemistry teachers. J. Res. Sci. Teach., 32: 1097–1110.
  • Eryılmaz, A. 2010. Development and application of three-tier heat and temperature test: Sample of bachelor and graduate students. Egit Arast, 40:53-76.
  • Eryılmaz, A., Sürmeli, E. 2002. Üç-aşamalı sorularla öğrencilerin ısı ve sıcaklık konularındaki kavram yanılgılarının ölçülmesi. V. Ulusal Fen Bilimleri ve Matematik Eğitim Kongresi, 16–18
  • Eylül, ODTÜ, Ankara. [Çevrim-içi: http://www.metu.edu. tr/~eryilmaz/TamUcBaglant.pdf ], Erişim Tarihi: 26.11.2014.
  • Garnett, PJ., Treagust, DF. 1992a. Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. J. Res. Sci. Teach., 29:121–142.
  • Garnett, PJ., Treagust, DF. 1992b. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. J. Res. Sci. Teach., 29: 1079-1099.
  • Griffard, PB., Wandersee, JH. 2001. The two-tier instrument on photosynthesis: What does it diagnose? Int. J. Sci. Educ., 23:1039–1052.
  • Harrison, AG., Treagust, DF. 1998. Modeling in science lessons: Are there better ways to learn with models? Sch. Sci. Math., 98: 420–429.
  • Hazel, E., Prosser, M. 1994. First-year university students’ understanding of photosynthesis, their study strategies and learning context. Am. Biol. Teach., 56: 274-279.
  • Hestenes, D., Halloun, I. 1995. Interpreting the force concept inventory. The Physics Teacher, 33: 502-506.
  • Kaya, ON. 2008. A student-centered approach: Assessing the changes in prospective science teachers’ conceptual understanding by concept mapping in a general chemistry laboratory. Res. Sci. Educ., 38: 91-110.
  • Kırbulut, D., Geban, O., Beeth, ME. 2010. Development of a three-tier multiple-choice diagnostic instrument to evaluate students’ understanding of states of matter. Paper presented at the European Conference on Research in Chemical Education (ECRICE), 4-7 July, 2010, Krakow, Poland.
  • Kırbulut, ZD. 2012. The effect of metaconceptual teaching instruction on 10th grade students’ understanding of states of matter, self-efficacy toward chemistry, and the nature of metaconceptual processes. Doctoral Dissertation, Middle East Technical University, 378 pp.
  • Montfort, D., Brown, S., Findley, K. 2007. Using interviews to identify student misconceptions in dynamics. In Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports, 2007. FIE’07. 37th Annual (pp. S3D-22). IEEE.
  • Nottis, KEK., McFarland, J. 2001. A comparative analysis of pre-service teacher analogies generated for process and structure concepts. EJSE, (5), 4: [Available online at:http:// ejse.southwestern.edu/article/view/7667/5434], Retrieved on 30.01.2014.
  • Peşman, H. 2005. Development of a three-tier test to assess ninth grade students’ misconceptions about simple electric circuits. M. Sc. thesis, Middle East Technical University, 187 pp.
  • Peşman, H., Eryılmaz, A. 2010. Development of a three-tier test to assess misconceptions about simple electric circuits. J. Educ. Res., 103: 208-222.
  • Ringnes, V. 1995. Oxidation-reduction learning difficulties and choice of redox models. Sch. Sci. Rev., 77: 477–478.
  • Rosenthal, DP., Sanger, MJ. 2012. Student misinterpretations and misconceptions based on their explanations of two computer animations of varying complexity depicting the same oxidation–reduction reaction. Chem. Educ. Res. Pract., 13: 471-483.
  • Sanger, MJ., Greenbowe, TJ. 1997a. Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. J. Res. Sci. Teach., 34: 377-398.
  • Sanger, MJ., Greenbowe, TJ. 1997b. Students’ misconceptions in electrochemistry: Current flow in electrolyte solutions and the salt bridge. J. Chem. Educ., 74: 819-823.
  • Sanger, MJ., Greenbowe, TJ. 1999. An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. J. Chem. Educ., 76: 853-860.
  • Sanger, MJ., Greenbowe, TJ. 2000. Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. Int. J. Sci. Educ., 22: 521-537.
  • Schaffer, DL. 2013. The development and validation of a threetier diagnostic test measuring pre-service elementary education and secondary science teachers’ understanding of the water cycle. Doctoral Dissertation, University of Missouri, 194 pp.
  • Schmidt, HJ. 1994. Der Oxidationssbegriff in Wissenschaft und Unterricht. Chem. Sch., 41: 6-10.
  • Schmidt, H J. 1997. Students’ misconceptions - looking for a pattern. Sci. Educ., 81: 123-135.
  • Schmidt, HJ., Volke, D. 2003. Shift of meaning and students’ alternative concepts. Int. J. Sci. Educ., 25: 1409-1424.
  • Şen, Ş., Yılmaz, A. 2013. A phenomenographic study on chemical bonding. Nef-Efmed, 7: 144-177.
  • Tan, KCD., Goh, NK., Chia, LS., Treagust, DF. 2002. Development and application of a two-tier multiplechoice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis. J. Res. Sci. Teach., 39: 283–301.
  • Thompson, F., Logue, S. 2006. An exploration of common student misconceptions in science. Int. Educ. J., 7: 553-559.
  • Treagust, DF., Mthembu, Z., Chandrasegaran, AL. 2014. Evaluation of the predict-observe-explain instructional strategy to enhance students’ understanding of redox reactions, In: I. Devetak, S. A. Glaz ˇar [eds.], Learning with understanding in the chemistry classroom. DOI: 10.1007/978-94-007-4366- 3_14, Springer Science+Business Media B.V., pp. 265-286.
  • Tsaparlis, G., Papaphotis, G. 2002. Quantum-chemical concepts: Are they suitable for secondary students? Chem. Educ. Res. Pract., 3: 129-144.
  • Uzuntiryaki, E., Geban, Ö. 2005. Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instr. Sci., 33: 311-339.
  • Yang, EM., Andre, T., Greenbowe, TJ., Tibell, L. 2003. Spatial ability and the impact of visualization/animation on learning electrochemistry. Int. J. Sci. Educ., 25: 329-349.

Development of Three-Tier Electrochemistry Concept Test

Yıl 2018, Cilt: 8 Sayı: 1, 324 - 330, 01.01.2018

Öz

The aim of this study was to develop a three-tier concept test to determine the conceptual understanding of high school students in relation to the electrochemistry, and to conduct the reliability and validity studies of the test. A total of 268 high school students participated in the study. The age of the students was between16 and 20. In the study, a 29-item test consisting of three-tier items was used. Expert opinion was obtained for content and face validity of the test. In order to conduct the item analyzes, the top 27% of students and the bottom 27% of students were determined according to the total scores of the test. As a result of the item analyzes, item difficulty indices and item discrimination indices were determined. After of these analyzes, 10 questions were removed from the test. Expert opinion was obtained again for this final test. In addition, false positive and false negative values were calculated for content validity. Then statistical analyzes were made for the structure validity and then the reliability coefficient for the first tier of the 19-item test was calculated as .833; for the first and second tiers was calculated as .803 and for the three tiers together was calculated as .810. The reliability coefficient for the confidence level only the third tier was calculated as .753. At the end of the study, the Electrochemistry Concept Test was considered as a reliable and valid test.

Kaynakça

  • Acar, B., Tarhan, L. 2007. Effect of cooperative learning strategies on students’ understanding of concepts in electrochemistry. Int. J. Sci. Math. Educ., 5: 349-373.
  • Aykutlu, I., Şen, Aİ. 2012. Üç aşamalı test, kavram haritası ve analoji kullanılarak lise öğrencilerinin elektrik akimiz konusundaki kavram yanılgılarının belirlenmesi. Egit Bilim, 37: 275-288.
  • Brandriet, AR. 2014. Investigating Students’ Understandings of the Symbolic, Macroscopic, and Particulate Domains of Oxidation-Reduction and the Development of the Redox Concept Inventory. Doctoral dissertation, Miami University, 423 pp.
  • Caleon, I., Subramaniam, R. 2010. Development and application of a three‐tier diagnostic test to assess secondary students’ understanding of waves. Int. J. Sci. Educ., 32: 939-961.
  • Çalık, M., Ayas, A. 2005. A comparison of level of understanding of eighth‐grade students and science student teachers related to selected chemistry concepts. J. Res. Sci. Teach., 42: 638-667.
  • Çataloğlu, E. 2002. Development and validation of an achievement test in introductory quantum mechanics: The quantum mechanics visualization instrument (QMVI). Doctoral dissertation, The Pennsylvania State University, 211 pp.
  • Çetin Dindar, A. 2012. The effect of 5e learning cycle model on eleventh grade students’ conceptual understanding of acids and bases concepts and motivation to learn chemistry. Doctoral Dissertation, Middle East Technical University, Ankara, 374 pp.
  • Coştu, B., Ayas, A., Niaz, M., Ünal, S., Çalık, M. 2007. Facilitating conceptual change in students’ understanding of boiling concept. J. Sci. Educ. Technol., 16: 524-536.
  • De Jong, O., Acampo, J., Verdonk, A. 1995. Problems in teaching the topic of redox reactions. Actions and conceptions of chemistry teachers. J. Res. Sci. Teach., 32: 1097–1110.
  • Eryılmaz, A. 2010. Development and application of three-tier heat and temperature test: Sample of bachelor and graduate students. Egit Arast, 40:53-76.
  • Eryılmaz, A., Sürmeli, E. 2002. Üç-aşamalı sorularla öğrencilerin ısı ve sıcaklık konularındaki kavram yanılgılarının ölçülmesi. V. Ulusal Fen Bilimleri ve Matematik Eğitim Kongresi, 16–18
  • Eylül, ODTÜ, Ankara. [Çevrim-içi: http://www.metu.edu. tr/~eryilmaz/TamUcBaglant.pdf ], Erişim Tarihi: 26.11.2014.
  • Garnett, PJ., Treagust, DF. 1992a. Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. J. Res. Sci. Teach., 29:121–142.
  • Garnett, PJ., Treagust, DF. 1992b. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. J. Res. Sci. Teach., 29: 1079-1099.
  • Griffard, PB., Wandersee, JH. 2001. The two-tier instrument on photosynthesis: What does it diagnose? Int. J. Sci. Educ., 23:1039–1052.
  • Harrison, AG., Treagust, DF. 1998. Modeling in science lessons: Are there better ways to learn with models? Sch. Sci. Math., 98: 420–429.
  • Hazel, E., Prosser, M. 1994. First-year university students’ understanding of photosynthesis, their study strategies and learning context. Am. Biol. Teach., 56: 274-279.
  • Hestenes, D., Halloun, I. 1995. Interpreting the force concept inventory. The Physics Teacher, 33: 502-506.
  • Kaya, ON. 2008. A student-centered approach: Assessing the changes in prospective science teachers’ conceptual understanding by concept mapping in a general chemistry laboratory. Res. Sci. Educ., 38: 91-110.
  • Kırbulut, D., Geban, O., Beeth, ME. 2010. Development of a three-tier multiple-choice diagnostic instrument to evaluate students’ understanding of states of matter. Paper presented at the European Conference on Research in Chemical Education (ECRICE), 4-7 July, 2010, Krakow, Poland.
  • Kırbulut, ZD. 2012. The effect of metaconceptual teaching instruction on 10th grade students’ understanding of states of matter, self-efficacy toward chemistry, and the nature of metaconceptual processes. Doctoral Dissertation, Middle East Technical University, 378 pp.
  • Montfort, D., Brown, S., Findley, K. 2007. Using interviews to identify student misconceptions in dynamics. In Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports, 2007. FIE’07. 37th Annual (pp. S3D-22). IEEE.
  • Nottis, KEK., McFarland, J. 2001. A comparative analysis of pre-service teacher analogies generated for process and structure concepts. EJSE, (5), 4: [Available online at:http:// ejse.southwestern.edu/article/view/7667/5434], Retrieved on 30.01.2014.
  • Peşman, H. 2005. Development of a three-tier test to assess ninth grade students’ misconceptions about simple electric circuits. M. Sc. thesis, Middle East Technical University, 187 pp.
  • Peşman, H., Eryılmaz, A. 2010. Development of a three-tier test to assess misconceptions about simple electric circuits. J. Educ. Res., 103: 208-222.
  • Ringnes, V. 1995. Oxidation-reduction learning difficulties and choice of redox models. Sch. Sci. Rev., 77: 477–478.
  • Rosenthal, DP., Sanger, MJ. 2012. Student misinterpretations and misconceptions based on their explanations of two computer animations of varying complexity depicting the same oxidation–reduction reaction. Chem. Educ. Res. Pract., 13: 471-483.
  • Sanger, MJ., Greenbowe, TJ. 1997a. Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. J. Res. Sci. Teach., 34: 377-398.
  • Sanger, MJ., Greenbowe, TJ. 1997b. Students’ misconceptions in electrochemistry: Current flow in electrolyte solutions and the salt bridge. J. Chem. Educ., 74: 819-823.
  • Sanger, MJ., Greenbowe, TJ. 1999. An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. J. Chem. Educ., 76: 853-860.
  • Sanger, MJ., Greenbowe, TJ. 2000. Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. Int. J. Sci. Educ., 22: 521-537.
  • Schaffer, DL. 2013. The development and validation of a threetier diagnostic test measuring pre-service elementary education and secondary science teachers’ understanding of the water cycle. Doctoral Dissertation, University of Missouri, 194 pp.
  • Schmidt, HJ. 1994. Der Oxidationssbegriff in Wissenschaft und Unterricht. Chem. Sch., 41: 6-10.
  • Schmidt, H J. 1997. Students’ misconceptions - looking for a pattern. Sci. Educ., 81: 123-135.
  • Schmidt, HJ., Volke, D. 2003. Shift of meaning and students’ alternative concepts. Int. J. Sci. Educ., 25: 1409-1424.
  • Şen, Ş., Yılmaz, A. 2013. A phenomenographic study on chemical bonding. Nef-Efmed, 7: 144-177.
  • Tan, KCD., Goh, NK., Chia, LS., Treagust, DF. 2002. Development and application of a two-tier multiplechoice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis. J. Res. Sci. Teach., 39: 283–301.
  • Thompson, F., Logue, S. 2006. An exploration of common student misconceptions in science. Int. Educ. J., 7: 553-559.
  • Treagust, DF., Mthembu, Z., Chandrasegaran, AL. 2014. Evaluation of the predict-observe-explain instructional strategy to enhance students’ understanding of redox reactions, In: I. Devetak, S. A. Glaz ˇar [eds.], Learning with understanding in the chemistry classroom. DOI: 10.1007/978-94-007-4366- 3_14, Springer Science+Business Media B.V., pp. 265-286.
  • Tsaparlis, G., Papaphotis, G. 2002. Quantum-chemical concepts: Are they suitable for secondary students? Chem. Educ. Res. Pract., 3: 129-144.
  • Uzuntiryaki, E., Geban, Ö. 2005. Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instr. Sci., 33: 311-339.
  • Yang, EM., Andre, T., Greenbowe, TJ., Tibell, L. 2003. Spatial ability and the impact of visualization/animation on learning electrochemistry. Int. J. Sci. Educ., 25: 329-349.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Şenol Şen Bu kişi benim

Ayhan Yılmaz Bu kişi benim

Ömer Geban Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Şen, Ş., Yılmaz, A., & Geban, Ö. (2018). Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi. Karaelmas Fen Ve Mühendislik Dergisi, 8(1), 324-330.
AMA Şen Ş, Yılmaz A, Geban Ö. Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2018;8(1):324-330.
Chicago Şen, Şenol, Ayhan Yılmaz, ve Ömer Geban. “Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi”. Karaelmas Fen Ve Mühendislik Dergisi 8, sy. 1 (Ocak 2018): 324-30.
EndNote Şen Ş, Yılmaz A, Geban Ö (01 Ocak 2018) Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi 8 1 324–330.
IEEE Ş. Şen, A. Yılmaz, ve Ö. Geban, “Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi”, Karaelmas Fen ve Mühendislik Dergisi, c. 8, sy. 1, ss. 324–330, 2018.
ISNAD Şen, Şenol vd. “Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi”. Karaelmas Fen ve Mühendislik Dergisi 8/1 (Ocak 2018), 324-330.
JAMA Şen Ş, Yılmaz A, Geban Ö. Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:324–330.
MLA Şen, Şenol vd. “Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi”. Karaelmas Fen Ve Mühendislik Dergisi, c. 8, sy. 1, 2018, ss. 324-30.
Vancouver Şen Ş, Yılmaz A, Geban Ö. Üç Aşamalı Elektrokimya Kavram Testinin Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(1):324-30.