BibTex RIS Cite

Optimization of physical factors affecting the production of the α-amylase from a newly isolated Bacillus sp. M10 strain

Year 2017, Volume: 7 Issue: 1, 23 - 30, 01.01.2017

Abstract

In this study, sixty bacteria isolated from soil samples that come from 15 different cities of Turkey. The four isolates which had a higher ratio of clearing zone were determined to be α-amylase positive, and were investegated for morphological and physiological. All of these were defined as Bacillus. Enzyme production capacity of these 4 strain have been tested. The bacteria which has the highest α-amylase activity was selected as a Bacillus strain and these strain was named as Bacillus sp. M-10. It's investigated that physical factors which are affecting the α-amylase production of Bacillus sp. M-10. For this purpose, temperature, pH, aeration, inoculum size and inoculum age have been tested as physical parameters. In starchy medium, 37°C temperature, pH 7.0, 150 rpm for aeration, 2.5 ml inoculation size and 2 days for inoculation age were the optimum rate for maximum α-amylase production of Bacillus sp. M-10 strain. In order to enhance the production of α-amylase, medium was modified by our, and the enzyme activity was found 30 U/mL at the hour of 48. In modified environment, enzyme activity was increased about 42% rate.

References

  • Abd-Elhalem, BT., El-Sawy, M., Gamal, RF., Abou-Taleb, KA. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial byproducts. Ann. Agric. Sci., 60: 193-202.
  • Abou-Zeid, A. 1996. Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus. Microbios, 89: 55-66.
  • Abusham, RA., Rahman, RNZR., Salleh, AB., Basri, M. 2009. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb. Cell Fact., 8: 20-28
  • Ahmed, K., Munawar, S., Khan, MA. 2015. Cultural conditions for maximum alpha-amylase production by Penicillium notatum IBGE 03 using shaken flask technique of submerged fermentation. Pure Appl. Biol., 4: 306
  • Asgher, M., Asad, MJ., Rahman, S., Legge, R. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng., 79: 950-955.
  • Ashokkumar, B., Kayalvizhi, N., Gunasekaran, P. 2001. Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem., 37: 331-338.
  • Dahot, M. 1986. Biosynthesis of Invertase by Penicillium expansum. J. Pure App. Sci., 5: 23-26.
  • Day, SA. 2015. http://alevelnotes.com/Factors-affecting-EnzymeActivity/146 Dincbas, S., Demirkan, E. 2010. Comparison of hydrolysis abilities onto soluble and commercial raw starches of immobilized and free B. amyloliquefaciens α-amylase. J. Environ. Sci., 4(11): 87-95.
  • Djamel, C., Ali, T., Nelly, C. 2009. Acid protease production by isolated species of Penicillium. Eur. J. Sci. Res., 25: 469-477.
  • Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., Srinivasulu, B. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem., 38: 615-620.
  • Goes, AP., Sheppard, JD. 1999. Effect of surfactants on α-amylase production in a solid substrate fermentation process. J. Chem. Technol. Biotechnol., 74: 709-712.
  • Gots, JS., Buchanan, R., Gibbons, N. 1975. Bergey’s Manual of Determinative Bacteriology. 9th edition, Williams & Wilkins Co., Baltimore. pp. 747-842.
  • Gupta, R., Beg, Q., Khan, S., Chauhan, B. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. J. Appl. Microbiol. Biotechnol., 60: 381-395.
  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, VK., Chauhan, B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem., 38: 1599-1616.
  • Gupta, R., Hiteshi, K., Rana, S. 2015. Cold active alpha amylase from a psychrophilic bacterial isolate. J. Biochem. Technol., 6: 1030-1033.
  • Jogezai, N., Raza, A., Abbas, F., Bajwa, M., Mohammad, D., Kakar, W., Saeed, M., Awan, A. 2011. Optimization of cultural conditions for microbial alpha amylase production. J. Microbiol. Antimicrob., 3: 221-227.
  • Mamma, D., Kourtoglou, E., Christakopoulos, P. 2008. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol., 99: 2373-2383.
  • Mukhtar, H., Ikram Ul, H. 2012. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor. Braz. J. Microbiol., 43: 1072-1079.
  • Nascimento, WCA., Martins, MLL. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol., 35: 91-96.
  • Padhiar, AR., Kommu, S. 2016. Isolation, Characterization and Optimization of Bacteria producing Amylase. Int. J. Adv. Res. Biol. Sci., 3(7): 1-7.
  • Pandey, A., Nigam, P., Soccol, CR., Soccol, VT., Singh, D., Mohan, R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem., 31 (2): 135-152.
  • Papagianni, M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., 22: 189-259.
  • Park, CW., Zipp, E. 2000. http://www.rpi.edu/dept/chem-eng/ Biotech-Environ/Projects00/temph/enzyme.html
  • Pazouki, M., Panda, T. 2000. Understanding the morphology of fungi. Bioprocess Eng., 22: 127-143.
  • Roychoudhury, S., Parulekar, SJ., Weigand, W.A. 1989. Cell growth and α-amylase production characteristics of Bacillus amyloliquefaciens. Biotech. and Bioeng. 33: 197-206.
  • Saleem, A., Ebrahim, MKH. 2014. Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. J. Taibah Univ. Sci., 8: 90-97.
  • Saxena, L., Iyer, B.K., Ananthanarayan, L. 2007. Three phase partitioning as a novel method for purification of ragi (Eleusine coracana) bifunctional amylase/protease inhibitor. Process Biochem., 42: 491-495.
  • Sharma, A., Satyanarayana, T. 2011. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca 2+-independent α-amylase by Bacillus acidicola. J. Biosci. Bioeng.,111: 550-553.
  • Singh, P., Gupta, P., Singh, R., Sharma, R. 2012. Factors affecting alfa Amylase Production on Submerged Fermentation by Bacillus sp. Int. J. Pha. Life Sci., 3(12): 2243-2246.
  • Singh, V., Sharma, R., Sharma, P. 2015. Isolation, screening and optimization of amylase producing Bacillus sp. from soil. APJHS, 2: 86-93.
  • Sivakumar, T., Ramasubramanian, V., Shankar, T., Vijayabaskar, P., Anandapandian, K. 2011. Screening of keratinolytic bacteria Bacillus cereus from the feather dumping soil of sivakasi. J. Basic Appl. Bio. 5: 305-314.
  • Sivakumar, T., Shankar, T., Vijayabaskar, P., Muthukumar, J., Nagendrakannan, E. 2012. Amylase production using Bacillus cereus isolated from a vermicompost site. Int. J. Microbiol. Res., 3: 117-123.
  • Sudharhsan, S., Senthilkumar, S., Ranjith, K. 2007. Physical and nutritional factors affecting the production of amylase from species of Bacillus isolated from spoiled food waste. Afr. J. Biotechnol. 6 (4): 430-435
  • Suribabu, K., Govardhan, TL., Hemalatha, K. 2014. Optimization of physical parameters of α-amylase producing Brevibacillus Borostelensis R1 in submerged fermentation. IJRET, 1: 517-525.
  • Vengadaramana, A., Balakumar, S., Arasaratnam, V. 2012. Production and optimization of α-amylase by Bacillus licheniformis ATCC 6346 in lab Bench-Scale fermenter. J. Microbiol. Biotechnol. Res., 2: 190-211.
  • Wanderley, KJ., Torres, FA., Moraes, LM., Ulhoa, CJ. 2004. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett., 231:165-169.
  • Yoo, Y.J., Hong, J., Hatch, RT. 1987. Comparison of alphaamylase activities from different assay methods. Biotechnol. Bioeng., 30:147-151.
  • Zar, MS., Ul Haq, I. 2012. Optimization of the alpha amylase production from Bacillus amyloliquefaciens IIB-14 via parameter significance analysis and response surface methodology. Afr. J. Microbiol. Res., 6: 3845-3855.

Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu

Year 2017, Volume: 7 Issue: 1, 23 - 30, 01.01.2017

Abstract

Bu çalışmada Türkiye’ nin 15 farklı ilinden temin edilen toprak örneklerinden 60 bakteri izole edilmiştir. α-Amilaz pozitif olarak belirlenen en geniş açık zon çapına sahip 4 bakterinin morfolojik ve fizyolojik özellikleri araştırılmış ve hepsinin Bacillus cinsine ait olduğu saptanmıştır. 4 suşun enzim üretim kapasiteleri test edilmiştir. En yüksek α-amilaz aktivitesine sahip Bacillus suşu seçilmiş ve bu suş, Bacillus sp. M-10 olarak adlandırılmıştır. Bacillus sp. M-10’un α-amilaz üretimini etkileyen bazı fiziksel faktörlerin etkisi araştırılmıştır. Bu amaçla, sıcaklık, pH, havalandırma, inokulüm miktarı ve inokulüm yaşı gibi fiziksel parametreler denenmiştir. Bacillus sp. M-10 suşunun maksimum α-amilaz üretimi, nişastalı ortamda, 37°C sıcaklıkta, pH 7,0, havalandırma 150 rpm, inokülasyon miktarının %2.5 v/v ve inokülasyon yaşının 2 gün olduğu değerlerde optimum düzeydedir. Tarafımızdan modifiye edilen ortam, daha yüksek enzim aktivitesi elde etmek için en uygun ortam olup, enzim aktivitesi 48. saatte 30 U/ mL olarak bulunmuştur. Modifiye edilen ortamda enzim aktivitesinde yaklaşık % 42 oranında artış gözlenmiştir

References

  • Abd-Elhalem, BT., El-Sawy, M., Gamal, RF., Abou-Taleb, KA. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial byproducts. Ann. Agric. Sci., 60: 193-202.
  • Abou-Zeid, A. 1996. Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus. Microbios, 89: 55-66.
  • Abusham, RA., Rahman, RNZR., Salleh, AB., Basri, M. 2009. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb. Cell Fact., 8: 20-28
  • Ahmed, K., Munawar, S., Khan, MA. 2015. Cultural conditions for maximum alpha-amylase production by Penicillium notatum IBGE 03 using shaken flask technique of submerged fermentation. Pure Appl. Biol., 4: 306
  • Asgher, M., Asad, MJ., Rahman, S., Legge, R. 2007. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng., 79: 950-955.
  • Ashokkumar, B., Kayalvizhi, N., Gunasekaran, P. 2001. Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem., 37: 331-338.
  • Dahot, M. 1986. Biosynthesis of Invertase by Penicillium expansum. J. Pure App. Sci., 5: 23-26.
  • Day, SA. 2015. http://alevelnotes.com/Factors-affecting-EnzymeActivity/146 Dincbas, S., Demirkan, E. 2010. Comparison of hydrolysis abilities onto soluble and commercial raw starches of immobilized and free B. amyloliquefaciens α-amylase. J. Environ. Sci., 4(11): 87-95.
  • Djamel, C., Ali, T., Nelly, C. 2009. Acid protease production by isolated species of Penicillium. Eur. J. Sci. Res., 25: 469-477.
  • Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., Srinivasulu, B. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem., 38: 615-620.
  • Goes, AP., Sheppard, JD. 1999. Effect of surfactants on α-amylase production in a solid substrate fermentation process. J. Chem. Technol. Biotechnol., 74: 709-712.
  • Gots, JS., Buchanan, R., Gibbons, N. 1975. Bergey’s Manual of Determinative Bacteriology. 9th edition, Williams & Wilkins Co., Baltimore. pp. 747-842.
  • Gupta, R., Beg, Q., Khan, S., Chauhan, B. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. J. Appl. Microbiol. Biotechnol., 60: 381-395.
  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, VK., Chauhan, B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem., 38: 1599-1616.
  • Gupta, R., Hiteshi, K., Rana, S. 2015. Cold active alpha amylase from a psychrophilic bacterial isolate. J. Biochem. Technol., 6: 1030-1033.
  • Jogezai, N., Raza, A., Abbas, F., Bajwa, M., Mohammad, D., Kakar, W., Saeed, M., Awan, A. 2011. Optimization of cultural conditions for microbial alpha amylase production. J. Microbiol. Antimicrob., 3: 221-227.
  • Mamma, D., Kourtoglou, E., Christakopoulos, P. 2008. Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol., 99: 2373-2383.
  • Mukhtar, H., Ikram Ul, H. 2012. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor. Braz. J. Microbiol., 43: 1072-1079.
  • Nascimento, WCA., Martins, MLL. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol., 35: 91-96.
  • Padhiar, AR., Kommu, S. 2016. Isolation, Characterization and Optimization of Bacteria producing Amylase. Int. J. Adv. Res. Biol. Sci., 3(7): 1-7.
  • Pandey, A., Nigam, P., Soccol, CR., Soccol, VT., Singh, D., Mohan, R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem., 31 (2): 135-152.
  • Papagianni, M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., 22: 189-259.
  • Park, CW., Zipp, E. 2000. http://www.rpi.edu/dept/chem-eng/ Biotech-Environ/Projects00/temph/enzyme.html
  • Pazouki, M., Panda, T. 2000. Understanding the morphology of fungi. Bioprocess Eng., 22: 127-143.
  • Roychoudhury, S., Parulekar, SJ., Weigand, W.A. 1989. Cell growth and α-amylase production characteristics of Bacillus amyloliquefaciens. Biotech. and Bioeng. 33: 197-206.
  • Saleem, A., Ebrahim, MKH. 2014. Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawwarah, Saudi Arabia. J. Taibah Univ. Sci., 8: 90-97.
  • Saxena, L., Iyer, B.K., Ananthanarayan, L. 2007. Three phase partitioning as a novel method for purification of ragi (Eleusine coracana) bifunctional amylase/protease inhibitor. Process Biochem., 42: 491-495.
  • Sharma, A., Satyanarayana, T. 2011. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca 2+-independent α-amylase by Bacillus acidicola. J. Biosci. Bioeng.,111: 550-553.
  • Singh, P., Gupta, P., Singh, R., Sharma, R. 2012. Factors affecting alfa Amylase Production on Submerged Fermentation by Bacillus sp. Int. J. Pha. Life Sci., 3(12): 2243-2246.
  • Singh, V., Sharma, R., Sharma, P. 2015. Isolation, screening and optimization of amylase producing Bacillus sp. from soil. APJHS, 2: 86-93.
  • Sivakumar, T., Ramasubramanian, V., Shankar, T., Vijayabaskar, P., Anandapandian, K. 2011. Screening of keratinolytic bacteria Bacillus cereus from the feather dumping soil of sivakasi. J. Basic Appl. Bio. 5: 305-314.
  • Sivakumar, T., Shankar, T., Vijayabaskar, P., Muthukumar, J., Nagendrakannan, E. 2012. Amylase production using Bacillus cereus isolated from a vermicompost site. Int. J. Microbiol. Res., 3: 117-123.
  • Sudharhsan, S., Senthilkumar, S., Ranjith, K. 2007. Physical and nutritional factors affecting the production of amylase from species of Bacillus isolated from spoiled food waste. Afr. J. Biotechnol. 6 (4): 430-435
  • Suribabu, K., Govardhan, TL., Hemalatha, K. 2014. Optimization of physical parameters of α-amylase producing Brevibacillus Borostelensis R1 in submerged fermentation. IJRET, 1: 517-525.
  • Vengadaramana, A., Balakumar, S., Arasaratnam, V. 2012. Production and optimization of α-amylase by Bacillus licheniformis ATCC 6346 in lab Bench-Scale fermenter. J. Microbiol. Biotechnol. Res., 2: 190-211.
  • Wanderley, KJ., Torres, FA., Moraes, LM., Ulhoa, CJ. 2004. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett., 231:165-169.
  • Yoo, Y.J., Hong, J., Hatch, RT. 1987. Comparison of alphaamylase activities from different assay methods. Biotechnol. Bioeng., 30:147-151.
  • Zar, MS., Ul Haq, I. 2012. Optimization of the alpha amylase production from Bacillus amyloliquefaciens IIB-14 via parameter significance analysis and response surface methodology. Afr. J. Microbiol. Res., 6: 3845-3855.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Elif Demirkan This is me

Tuba Sevgi This is me

Merve Başkurt This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Demirkan, E., Sevgi, T., & Başkurt, M. (2017). Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu. Karaelmas Fen Ve Mühendislik Dergisi, 7(1), 23-30.
AMA Demirkan E, Sevgi T, Başkurt M. Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi. January 2017;7(1):23-30.
Chicago Demirkan, Elif, Tuba Sevgi, and Merve Başkurt. “Yeni İzole Edilen Bacillus Sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu”. Karaelmas Fen Ve Mühendislik Dergisi 7, no. 1 (January 2017): 23-30.
EndNote Demirkan E, Sevgi T, Başkurt M (January 1, 2017) Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi 7 1 23–30.
IEEE E. Demirkan, T. Sevgi, and M. Başkurt, “Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu”, Karaelmas Fen ve Mühendislik Dergisi, vol. 7, no. 1, pp. 23–30, 2017.
ISNAD Demirkan, Elif et al. “Yeni İzole Edilen Bacillus Sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu”. Karaelmas Fen ve Mühendislik Dergisi 7/1 (January 2017), 23-30.
JAMA Demirkan E, Sevgi T, Başkurt M. Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:23–30.
MLA Demirkan, Elif et al. “Yeni İzole Edilen Bacillus Sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 7, no. 1, 2017, pp. 23-30.
Vancouver Demirkan E, Sevgi T, Başkurt M. Yeni İzole Edilen Bacillus sp. M-10 Suşundan α-Amilazın Üretimini Etkileyen Fiziksel Faktörlerin Optimizasyonu. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(1):23-30.