xn+1 = xn xn-1+a Fark Denkleminin Periyodikliği Üzerine
Yıl 2016,
Cilt: 6 Sayı: 2, 329 - 333, 01.06.2016
Erkan Taşdemir
,
Yüksel Soykan
Öz
Bu makalede, x-1 ve x0 başlangıç koşulları reel sayılar olmak üzere, n∈N0 için xn+1=xnxn-1+a, lineer olmayan fark denkleminin periyodikliği ve terimlerinin davranışları incelenmiştir
Kaynakça
- Amleh, AM., Camouzis, E., Ladas, G. 2008. On the dynamics of a rational difference equation, Part 2. IJDE, 3(2), 195-225.
- Amleh, AM., Camouzis, E., Ladas, G. 2008. On the dynamics of a rational difference equation, Part I. IJDE, 3(1), 1-35.
- Elaydi, S. 1996. An introduction to difference equations. New York: Springer.
- Elsayed, EM., El-Dessoky, MM. 2013. Dynamics and global behavior for a fourth-order rational difference equation. Hacet. J. Math. Stat., 42(5), 479-494.
- Gümüş, M. 2013. The Periodicity of Positive Solutions of the Nonlinear Difference Equation . Discrete Dyn. Nat. Soc., 2013, 1-3. doi:10.1155/2013/742912
- Gümüş, M., Öcalan, Ö. 2012. Some Notes on the Difference Equation Discrete Dyn. Nat. Soc., 2012, 1-12. doi:10.1155/2012/258502
- Gümüş, M., Öcalan, Ö. 2014. Global Asymptotic Stability of a Nonautonomous Difference Equation. J. Appl. Math., 2014, 1-5. doi:10.1155/2014/395954 x x2- 2x x2-x12-x2- 12-x12-x2- ax22
- Öcalan, Ö., Ogünmez, H., Gümüş, M. 2014. Global behavior test for a nonlinear difference equation with a period-two coefficient. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 21(3-4), 307-316.
- Stevic, S. 2008. On the difference equation . Comput. Math. Appl., 56, 1159-1171.
- Stević, S. 2008. Nontrivial solutions of a higher-order rational difference equation. Math. Notes, 84(5-6), 718-724. doi:10.1134/s0001434608110138
- Stević, S., Iričanin, B. 2011. Unbounded Solutions of the Difference Equation. Abstr. Appl. Anal., 2011, 1-8. doi:10.1155/2011/561682
- Stević, S., Alghamdi, MA., Alotaibi, A. 2015. Boundedness character of the recursive sequence . Appl. Math. Lett., 50, 83- 90. doi:10.1016/j.aml.2015.06.006
- Stevic, S., Diblik, J., Iricanin, B., Smarda, Z. 2014. Solvability of nonlinear difference equations of fourth order. EJDE, 2014(264), 1-14.
On The Periodicies of The Difference Equation x_ n+1 =x_n x_ n-1 +α
Yıl 2016,
Cilt: 6 Sayı: 2, 329 - 333, 01.06.2016
Erkan Taşdemir
,
Yüksel Soykan
Öz
In this paper, we investigate the periodicities and long-term behaviour of the nonlinear difference equation: , , where the initial conditions and are real numbers.
Kaynakça
- Amleh, AM., Camouzis, E., Ladas, G. 2008. On the dynamics of a rational difference equation, Part 2. IJDE, 3(2), 195-225.
- Amleh, AM., Camouzis, E., Ladas, G. 2008. On the dynamics of a rational difference equation, Part I. IJDE, 3(1), 1-35.
- Elaydi, S. 1996. An introduction to difference equations. New York: Springer.
- Elsayed, EM., El-Dessoky, MM. 2013. Dynamics and global behavior for a fourth-order rational difference equation. Hacet. J. Math. Stat., 42(5), 479-494.
- Gümüş, M. 2013. The Periodicity of Positive Solutions of the Nonlinear Difference Equation . Discrete Dyn. Nat. Soc., 2013, 1-3. doi:10.1155/2013/742912
- Gümüş, M., Öcalan, Ö. 2012. Some Notes on the Difference Equation Discrete Dyn. Nat. Soc., 2012, 1-12. doi:10.1155/2012/258502
- Gümüş, M., Öcalan, Ö. 2014. Global Asymptotic Stability of a Nonautonomous Difference Equation. J. Appl. Math., 2014, 1-5. doi:10.1155/2014/395954 x x2- 2x x2-x12-x2- 12-x12-x2- ax22
- Öcalan, Ö., Ogünmez, H., Gümüş, M. 2014. Global behavior test for a nonlinear difference equation with a period-two coefficient. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 21(3-4), 307-316.
- Stevic, S. 2008. On the difference equation . Comput. Math. Appl., 56, 1159-1171.
- Stević, S. 2008. Nontrivial solutions of a higher-order rational difference equation. Math. Notes, 84(5-6), 718-724. doi:10.1134/s0001434608110138
- Stević, S., Iričanin, B. 2011. Unbounded Solutions of the Difference Equation. Abstr. Appl. Anal., 2011, 1-8. doi:10.1155/2011/561682
- Stević, S., Alghamdi, MA., Alotaibi, A. 2015. Boundedness character of the recursive sequence . Appl. Math. Lett., 50, 83- 90. doi:10.1016/j.aml.2015.06.006
- Stevic, S., Diblik, J., Iricanin, B., Smarda, Z. 2014. Solvability of nonlinear difference equations of fourth order. EJDE, 2014(264), 1-14.