BibTex RIS Cite

147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği

Year 2016, Volume: 6 Issue: 2, 369 - 376, 01.06.2016

Abstract

Bu çalışmada, gaz fazındaki 147 atomlu Co-Pd nanoalaşımlarının teorik bir çalışması, atomlar arası etkileşmeler Gupta çok cisim potansiyel enerji fonksiyonu ile modellenerek yapılmıştır. ComPdn m+n=147 nanoalaşımlarının bazı kompozisyonları için en düşük enerjili yapılar Basin Hopping optimizasyon metodu ile elde edilmiştir. Tüm kompozisyonlar için m=0, 1, 13, 55, 92, 134, 147 ikosahedron geometrisi belirlenmiştir. Co13Pdçalışmada aynı zamanda Co-Pd nanoalaşımlarının iç ve kabuk katmanlarını da içeren erime dinamiği incelendi. Genel olarak erimenin en dıştaki kabuktan başladığı sonucu elde edildi

References

  • Arslan, H. 2007. Global minima for Pd-N (N=5-80) clusters described by Sutton-Chen potential. Int J Mod Phys C, 18: 1351-1359.
  • Arslan, H. 2008. Structures and energetic of Palladium-Cobalt binary clusters. Int J Mod Phys C, 19: 1243-1255.
  • Arslan, H., Garip, AK., Johnston, RL. 2015. Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters. Phys Chem Chem Phys, 17: 28311-28321.
  • Arslan, H., Irmak, AE. 2009. Heat Capacity of 13-and 19-Atom Pd-Co Binary Clusters: Parallel Tempering Monte Carlo Study. Int J Mod Phys C, 20: 1737-1747.
  • Asgari, M., Behnejad, H., Fortunelli, A. 2014. Composition- dependent melting behaviour of NaxK55-x core-shell nanoalloys. Mol Phys, 112: 2933-2944.
  • Baletto, F., Ferrando, R. 2005. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys, 77: 371-423.
  • Baletto, F., Ferrando, R., Fortunelli, A., Montalenti, F., Mottet, C. 2002. Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys, 116: 3856-3863.
  • Breaux, GA., Neal, CM., Cao, B., Jarrold, MF. 2005. Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys Rev Lett, 94.
  • Chen, FY., Curley, BC., Rossi, G., Johnston, RL. 2007. Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys. J Phys Chem C, 111: 9157-9165.
  • Cheng, DJ., Huang, SP., Wang, WC. 2006. (a) Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43. Phys Rev B, 74.
  • Cheng, DJ., Wang, WC., Huang, SP. 2006. (b) The onion-ring structure for Pd-Pt bimetallic clusters. J Phys Chem B, 110: 16193-16196.
  • Cheng, DJ., Wang, WC., Huang, SP. 2008. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. Phys Chem Chem Phys, 10: 2513-2518.
  • Cleri, F., Rosato, V. 1993. Tight-Binding Potentials for Transition-Metals and Alloys. Phys Rev B, 48: 22-33.
  • Ferrando, R., Jellinek, J., Johnston, R.L. 2008. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev, 108: 845-910.
  • Garip, A.K., Arslan, H. 2014. 40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi. Karaelmas Fen ve Mühendislik Dergisi, 4: 38-45.
  • Gonzalez, R.I., Garcia, G., Ramirez, R., Kiwi, M., Valdivia, JA., Rahman, T.S. 2011. Temperature-dependent properties of 147-and 309-atom iron-gold nanoclusters. Phys Rev B, 83.
  • Wen, Y.H., Huang, R., Zeng, X.M., Shao, G.F., Sun, S.G. 2014. Tetrahexahedral Pt-Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. J Mater Chem A, 2: 1375-1382.
  • Xiao, L., Zhuang, L., Liu, Y., Lu, J.T., Abruna, H.D. 2009. Activating Pd by Morphology Tailoring for Oxygen Reduction. J Am Chem Soc, 131: 602-608.
  • Zhang, H.J., Watanabe, T., Okumura, M., Haruta, M., Toshima, N. 2012. Catalytically highly active top gold atom on palladium nanocluster. Nat Mater, 11: 49-52.
  • Zhang, L., Wan, L., Ma, Y.R., Chen, Y., Zhou, Y.M., Tang, Y.W., Lu, T.H. 2013. Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl Catal B-Environ, 138: 229-235.

Melting Dynamics of 147 Atom Co-Pd Nanoalloys

Year 2016, Volume: 6 Issue: 2, 369 - 376, 01.06.2016

Abstract

A theoretical study has been made of 147 atom Co-Pd nanoalloy clusters in gas phase, with the interatomic interactions modelled by Gupta many-body potential. Basin Hopping algorithm has been used to find the lowest energy structures for some compositions of ComPdn m+n=147 clusters. Icosahedron geometry has beenidentified for all compositions m=0, 1, 13, 55, 92, 134, 147 . Co13Pd134 nanoalloy has the highest melting point among for all these compositions. It’s also investigated the melting dynamics including core and shell layers of Co-Pd clusters in this study. It’s concluded that melting begins from outermost shell generally

References

  • Arslan, H. 2007. Global minima for Pd-N (N=5-80) clusters described by Sutton-Chen potential. Int J Mod Phys C, 18: 1351-1359.
  • Arslan, H. 2008. Structures and energetic of Palladium-Cobalt binary clusters. Int J Mod Phys C, 19: 1243-1255.
  • Arslan, H., Garip, AK., Johnston, RL. 2015. Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters. Phys Chem Chem Phys, 17: 28311-28321.
  • Arslan, H., Irmak, AE. 2009. Heat Capacity of 13-and 19-Atom Pd-Co Binary Clusters: Parallel Tempering Monte Carlo Study. Int J Mod Phys C, 20: 1737-1747.
  • Asgari, M., Behnejad, H., Fortunelli, A. 2014. Composition- dependent melting behaviour of NaxK55-x core-shell nanoalloys. Mol Phys, 112: 2933-2944.
  • Baletto, F., Ferrando, R. 2005. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev Mod Phys, 77: 371-423.
  • Baletto, F., Ferrando, R., Fortunelli, A., Montalenti, F., Mottet, C. 2002. Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys, 116: 3856-3863.
  • Breaux, GA., Neal, CM., Cao, B., Jarrold, MF. 2005. Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys Rev Lett, 94.
  • Chen, FY., Curley, BC., Rossi, G., Johnston, RL. 2007. Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys. J Phys Chem C, 111: 9157-9165.
  • Cheng, DJ., Huang, SP., Wang, WC. 2006. (a) Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43. Phys Rev B, 74.
  • Cheng, DJ., Wang, WC., Huang, SP. 2006. (b) The onion-ring structure for Pd-Pt bimetallic clusters. J Phys Chem B, 110: 16193-16196.
  • Cheng, DJ., Wang, WC., Huang, SP. 2008. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters. Phys Chem Chem Phys, 10: 2513-2518.
  • Cleri, F., Rosato, V. 1993. Tight-Binding Potentials for Transition-Metals and Alloys. Phys Rev B, 48: 22-33.
  • Ferrando, R., Jellinek, J., Johnston, R.L. 2008. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem Rev, 108: 845-910.
  • Garip, A.K., Arslan, H. 2014. 40 atomlu Pd-Co ikili metal atom topaklarının yapısal özelliklerinin incelenmesi. Karaelmas Fen ve Mühendislik Dergisi, 4: 38-45.
  • Gonzalez, R.I., Garcia, G., Ramirez, R., Kiwi, M., Valdivia, JA., Rahman, T.S. 2011. Temperature-dependent properties of 147-and 309-atom iron-gold nanoclusters. Phys Rev B, 83.
  • Wen, Y.H., Huang, R., Zeng, X.M., Shao, G.F., Sun, S.G. 2014. Tetrahexahedral Pt-Pd alloy nanocatalysts with high-index facets: an atomistic perspective on thermodynamic and shape stabilities. J Mater Chem A, 2: 1375-1382.
  • Xiao, L., Zhuang, L., Liu, Y., Lu, J.T., Abruna, H.D. 2009. Activating Pd by Morphology Tailoring for Oxygen Reduction. J Am Chem Soc, 131: 602-608.
  • Zhang, H.J., Watanabe, T., Okumura, M., Haruta, M., Toshima, N. 2012. Catalytically highly active top gold atom on palladium nanocluster. Nat Mater, 11: 49-52.
  • Zhang, L., Wan, L., Ma, Y.R., Chen, Y., Zhou, Y.M., Tang, Y.W., Lu, T.H. 2013. Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl Catal B-Environ, 138: 229-235.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ali Kemal Garip This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite

APA Garip, A. K. (2016). 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen Ve Mühendislik Dergisi, 6(2), 369-376.
AMA Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. June 2016;6(2):369-376.
Chicago Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen Ve Mühendislik Dergisi 6, no. 2 (June 2016): 369-76.
EndNote Garip AK (June 1, 2016) 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi 6 2 369–376.
IEEE A. K. Garip, “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”, Karaelmas Fen ve Mühendislik Dergisi, vol. 6, no. 2, pp. 369–376, 2016.
ISNAD Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen ve Mühendislik Dergisi 6/2 (June 2016), 369-376.
JAMA Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. 2016;6:369–376.
MLA Garip, Ali Kemal. “147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 6, no. 2, 2016, pp. 369-76.
Vancouver Garip AK. 147 Atomlu Co-Pd Nanoalaşımlarının Erime Dinamiği. Karaelmas Fen ve Mühendislik Dergisi. 2016;6(2):369-76.