BibTex RIS Cite

Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı

Year 2016, Volume: 6 Issue: 1, 35 - 40, 01.01.2016

Abstract

Bu çalışmada, sularda ve havada izlenmesi gereken önemli kirletici parametrelerinden olan formaldehitin güvenli, seçici, hassas ve hızlı ölçülmesi amacıyla polipirol film ile hazırlanmış çalışma elektrodundan oluşan formaldehit biyosensörü geliştirilmiştir. Formaldehit dehidrogenaz enzimi polipirol film boşluklarına adsorbe edilerek elektroda bağlanmıştır. Sistemin sinyal gücünü artırmak amacıyla elektron aracısı olarak naftokinon kullanılmıştır. Dizayn edilen biyosensörden yüksek performansta sinyal alınabilmesi için önemli parametreler optimize edilmiştir. Biyosensör analitik parametreleri hesaplanarak elde edilen sonuçlar tartışılmıştır. Biyosensör ile, sulu ortamlarda ppb seviyesindeki formaldehit konsantrasyonları 12 saniyede ve yüksek hassasiyetle ölçülebilmiştir

References

  • Achmann, S., Hammerle, M., Moos, R. 2008a. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanal., 20: 410-417.
  • Achmann, S., Hermann, M., Hilbrig, F., Jerome, V., Hammerle, M., Freitag, R., Moos, R. 2008b. Direct detection of formaldehyde in air by a novel NAD+ and glutathione- independent formaldehyde dehydrogenase-based biosensor. Talanta, 75: 786-791.
  • Bareket, L., Rephaeli, A., Berkovitch, G., Nudelman, A., Rishpon, J. 2010. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochem., 77: 94-99.
  • Ben Ali, M., Gonchar, M., Gayda, G., Paryzhak, S., Maaref, MA., Jaffrezic-Renault, N., Korpan, Y. 2007. Formaldehyde- sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron., 22: 2790-2795.
  • Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
  • Can F, Korkut Ozoner, S., Ergenekon, P., Erhan, E. 2012. Amperometric nitrate biosensor based on Carbon nanotube/ Polypyrrole/Nitrate reductase biofilm electrode. Mat. Sci. Eng. C-Bio. S., 32: 18-23.
  • Demkiv, O., Smutok, O., Paryzhak, S., Gayda, G., Sultanov, Y., Guschin, D., Shkil, H., Schuhmann, W., Gonchar, M. 2008. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta, 76: 837-846.
  • Descampsa, MN., Bordya, T., Huea, J., Mariano, S., Nonglaton, G., Schultz, E., Tran-Thi, T.H., Vignoud-Despond, S. 2011. Real-time detection of formaldehyde by a sensor. Procedia Eng., 00:1-9.
  • Gebicki, J., Marcinek, A., Zielonka, J. 2004. Transient species in the stepwise interconversion of NADH and NAD(+). Acc. Chem. Res., 37: 379-386.
  • Gorton, L., Persson, B., Hale, HL, Boguslavsky, L.I., Karan, HI., Lee, HS., Skotheim, TA., Lan, HL., Okamoto, Y. 1992. Biosensors and Chemical Sensor, American Chemical Society, Maple Press, PA, York, 56 pp.
  • Hammerle, M., Achmann, S., Moos, R. 2008. Gas diffusion electrodes for use in an amperometric enzyme biosensor. Electroanal., 20: 2279-2286.
  • Hasebe, K., Osteryoung, J. 1975. Differential pulse polarographic detector for high performance liquid chromatography. Anal. Chem., 47: 2412-2418.
  • Herschkovitz, Y., Eshkenazi, I., Campbell, CE., Rishpon, J. 2000. An electrochemical biosensor for formaldehyde. J. Electroanal. Chem., 491: 182-187.
  • Kataky, R., Bryce, MR., Goldenberg, L., Hayes, S., Nowak, A. 2002. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta, 56: 451-458.
  • Korkut Ozoner, S., Erhan, E., Yılmaz, F., Ergenekon, P., Anıl, İ. 2013. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem Technol. Biotechnol., 88: 727-732.
  • Korpan, YI., Gonchar, MV., Sibirny, AA., Martelet, C., El’skaya, AV., Gibson, TD., Soldatkin, AP. 2000. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron., 15: 77-83.
  • Seyfioglu, R., Odabaşı, M., Çetin, E. 2006. Wet and dry deposition of formaldehyde in Izmir, Turkey. Sci. Total Environ., 366: 809-818.
  • Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F., Ono, M. 2008. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensor. Actuat. B-Chem, 135: 268-275.
  • Vianello, F., Boscolo-Chio, R., Signorini, S., Rigo, A. 2007. On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosens. Bioelectron., 22: 920-925.
  • Zhen, YQ., Wang, SE., Xiao, WX., Yuan, HY., Xiao, D. 2007. A fluorescent dosimeter for formaldehyde determination using the Nash reagent in silica gel beads. Microchim. Acta, 159: 305- 310.

Biosensor Design for Formaldehyde Measurement in Aqueous Mediums

Year 2016, Volume: 6 Issue: 1, 35 - 40, 01.01.2016

Abstract

In this study, a formaldehyde biosensor comprised of working electrode prepared with Polypyrrole film has been developed in order to get safe, selective, sensitive and fast detection of formaldehyde which should be detected in water and air as an important pollutant parameter. The enzyme formaldehyde deyhdrogenase has been immobilized onto the electrode by the adsorption into the pores of the Polypyrrole film. Napthoquinone has been used as an electron mediator to improve the power signal of the system. The important parameters have been optimized to get high-performanced signals from the designed biosensor. Results obtained from the calculation of the analytical parameters have been discussed. Formaldehyde concentrations at ppb level in aqueous mediums could be measured with high sensitivity at 12 seconds by the biosensor.

References

  • Achmann, S., Hammerle, M., Moos, R. 2008a. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanal., 20: 410-417.
  • Achmann, S., Hermann, M., Hilbrig, F., Jerome, V., Hammerle, M., Freitag, R., Moos, R. 2008b. Direct detection of formaldehyde in air by a novel NAD+ and glutathione- independent formaldehyde dehydrogenase-based biosensor. Talanta, 75: 786-791.
  • Bareket, L., Rephaeli, A., Berkovitch, G., Nudelman, A., Rishpon, J. 2010. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochem., 77: 94-99.
  • Ben Ali, M., Gonchar, M., Gayda, G., Paryzhak, S., Maaref, MA., Jaffrezic-Renault, N., Korpan, Y. 2007. Formaldehyde- sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens. Bioelectron., 22: 2790-2795.
  • Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
  • Can F, Korkut Ozoner, S., Ergenekon, P., Erhan, E. 2012. Amperometric nitrate biosensor based on Carbon nanotube/ Polypyrrole/Nitrate reductase biofilm electrode. Mat. Sci. Eng. C-Bio. S., 32: 18-23.
  • Demkiv, O., Smutok, O., Paryzhak, S., Gayda, G., Sultanov, Y., Guschin, D., Shkil, H., Schuhmann, W., Gonchar, M. 2008. Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta, 76: 837-846.
  • Descampsa, MN., Bordya, T., Huea, J., Mariano, S., Nonglaton, G., Schultz, E., Tran-Thi, T.H., Vignoud-Despond, S. 2011. Real-time detection of formaldehyde by a sensor. Procedia Eng., 00:1-9.
  • Gebicki, J., Marcinek, A., Zielonka, J. 2004. Transient species in the stepwise interconversion of NADH and NAD(+). Acc. Chem. Res., 37: 379-386.
  • Gorton, L., Persson, B., Hale, HL, Boguslavsky, L.I., Karan, HI., Lee, HS., Skotheim, TA., Lan, HL., Okamoto, Y. 1992. Biosensors and Chemical Sensor, American Chemical Society, Maple Press, PA, York, 56 pp.
  • Hammerle, M., Achmann, S., Moos, R. 2008. Gas diffusion electrodes for use in an amperometric enzyme biosensor. Electroanal., 20: 2279-2286.
  • Hasebe, K., Osteryoung, J. 1975. Differential pulse polarographic detector for high performance liquid chromatography. Anal. Chem., 47: 2412-2418.
  • Herschkovitz, Y., Eshkenazi, I., Campbell, CE., Rishpon, J. 2000. An electrochemical biosensor for formaldehyde. J. Electroanal. Chem., 491: 182-187.
  • Kataky, R., Bryce, MR., Goldenberg, L., Hayes, S., Nowak, A. 2002. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta, 56: 451-458.
  • Korkut Ozoner, S., Erhan, E., Yılmaz, F., Ergenekon, P., Anıl, İ. 2013. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem Technol. Biotechnol., 88: 727-732.
  • Korpan, YI., Gonchar, MV., Sibirny, AA., Martelet, C., El’skaya, AV., Gibson, TD., Soldatkin, AP. 2000. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron., 15: 77-83.
  • Seyfioglu, R., Odabaşı, M., Çetin, E. 2006. Wet and dry deposition of formaldehyde in Izmir, Turkey. Sci. Total Environ., 366: 809-818.
  • Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F., Ono, M. 2008. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensor. Actuat. B-Chem, 135: 268-275.
  • Vianello, F., Boscolo-Chio, R., Signorini, S., Rigo, A. 2007. On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosens. Bioelectron., 22: 920-925.
  • Zhen, YQ., Wang, SE., Xiao, WX., Yuan, HY., Xiao, D. 2007. A fluorescent dosimeter for formaldehyde determination using the Nash reagent in silica gel beads. Microchim. Acta, 159: 305- 310.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Şeyda Korkut This is me

Muhammet Samet Kılıç This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 1

Cite

APA Korkut, Ş., & Kılıç, M. S. (2016). Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı. Karaelmas Fen Ve Mühendislik Dergisi, 6(1), 35-40.
AMA Korkut Ş, Kılıç MS. Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı. Karaelmas Fen ve Mühendislik Dergisi. January 2016;6(1):35-40.
Chicago Korkut, Şeyda, and Muhammet Samet Kılıç. “Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı”. Karaelmas Fen Ve Mühendislik Dergisi 6, no. 1 (January 2016): 35-40.
EndNote Korkut Ş, Kılıç MS (January 1, 2016) Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı. Karaelmas Fen ve Mühendislik Dergisi 6 1 35–40.
IEEE Ş. Korkut and M. S. Kılıç, “Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı”, Karaelmas Fen ve Mühendislik Dergisi, vol. 6, no. 1, pp. 35–40, 2016.
ISNAD Korkut, Şeyda - Kılıç, Muhammet Samet. “Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı”. Karaelmas Fen ve Mühendislik Dergisi 6/1 (January 2016), 35-40.
JAMA Korkut Ş, Kılıç MS. Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı. Karaelmas Fen ve Mühendislik Dergisi. 2016;6:35–40.
MLA Korkut, Şeyda and Muhammet Samet Kılıç. “Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 6, no. 1, 2016, pp. 35-40.
Vancouver Korkut Ş, Kılıç MS. Sulu Ortamlardaki Formaldehitin Ölçümü İçin Biyosensör Dizaynı. Karaelmas Fen ve Mühendislik Dergisi. 2016;6(1):35-40.