BibTex RIS Cite

Hough Dönüşümü Kullanılarak Çoktan Seçmeli Sınav Kağıtları İçin Akıllı Bir Notlandırma Sisteminin Geliştirilmesi

Year 2016, Volume: 6 Issue: 1, 100 - 104, 01.01.2016

Abstract

Çoktan seçmeli sınavların notlandırılması genellikle optik işaret tanımlama makinaları olarak bilinen otomatik sistemler kullanılarak yapılmaktadır. Bu tarz çözümlerin var olmasına rağmen, eğitimcilerin ve araştırmacıların karşılaştığı bazı sorunlar vardır. Eğitimciler açısından; belirli bir bütçe gerektiren sistem kurulumu ve bakımlarının yapılması, araştırmacılar açısından ise; makina içerisinde çalışan algoritmalara ulaşmanın imkansızlığı gibi zorluklar mevcuttur. Bu çalışmada, çoktan seçmeli sınav kağıtlarının notlandırılması için yeni bir bakış açısı önerilmekte ve adımları sunulmaktadır. Çalışma, Hough dönüşümü kullanımı üzerine yoğunlaşmıştır. Önerilen otomatik notlandırma sistemi, 1000’den fazla sınav kağıdı üzerinde test edilmiş ve doğrulanmıştır. Sistemin performansı yapılan deneysel çalışma sonuçları ile gösterilmektedir

References

  • Abdu, A., M., Mokji, MM. 2012. A novel approach to a dynamic template generation algorithm for multiple-choice forms. In the Proceedings of the IEEE International Conference on Control System, Computing and Engineering, pp: 216-221, Malaysia.
  • Chinnasarn, K., Rangsanseri, Y. 1999. An image processing oriented optical mark reader. In the Proceedings of the International Society for Optical Engineering, pp: 702-708, USA.
  • Duda, RO., Hart, PE. 1972. Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM, 15(1): 11–15.
  • Fisteus, JA. , Pardo, A., Garcia, NF. 2013. Grading multiple choice exams with low-cost and portable computer-vision techniques. J. Sci. Educ. Tech., 22: 560–571.
  • Hough, PVC. 1959. Machine analysis of bubble chamber pictures. In the Proceedings of the 2nd International Conference on High- Energy Accelerators, pp: 554-558, Switzerland.
  • Hough, PVC. 1962. Method and means for recognizing complex patterns. US Patent 3069654-1962.
  • Nguyen, TD., Manh, QH., Minh, Pb., Thanh, LN., Hoang, TM. 2011. Efficient and reliable camera based multiple- choice test grading system. In the Proceedings of the International Conference on Advanced Technologies for Communications, pp: 268-271, Vietnam.
  • Rakesh, S., Kailash, A., Ashish, A. 2013. Cost effective optical mark reader. Int. J. Computer Sci. Artificial Int., 3(2): 44-49.
  • Sattayakawee, N. 2013. Test scoring for non-optical grid answer sheet based on projection profile method. Int. J. Info. Edu. Tech., 3(2): 273-277.
  • Zampirolli, FA., Gonzalez, JAQ., Neves, RPO. 2013. Automatic correction of multiple-choice tests using digital cameras and image processing. In the Proceedings of IX Workshop de Visão Computacional, pp: 1-6, Brazil. Total Time (min) 49.345

The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers

Year 2016, Volume: 6 Issue: 1, 100 - 104, 01.01.2016

Abstract

Grading multiple choice exams are generally performed using automated systems known as optical mark recognition machines. Although such automated solutions are available in the market, there are some challenges that the educators and researchers encounter such as setting up and maintaining the system they require a certain amount of budget and inaccessibility of the algorithms and processes running inside the machines. A series of approaches is proposed in this study to bring a new perspective to the automatic grading systems used for the multiple choice exams. The study focuses on the use of Hough transform method. To verify the validity of the automated grading system proposed, it is tested on more than 1000 exam papers. The performance of the system is demonstrated using the results obtained the experimental studies.

References

  • Abdu, A., M., Mokji, MM. 2012. A novel approach to a dynamic template generation algorithm for multiple-choice forms. In the Proceedings of the IEEE International Conference on Control System, Computing and Engineering, pp: 216-221, Malaysia.
  • Chinnasarn, K., Rangsanseri, Y. 1999. An image processing oriented optical mark reader. In the Proceedings of the International Society for Optical Engineering, pp: 702-708, USA.
  • Duda, RO., Hart, PE. 1972. Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM, 15(1): 11–15.
  • Fisteus, JA. , Pardo, A., Garcia, NF. 2013. Grading multiple choice exams with low-cost and portable computer-vision techniques. J. Sci. Educ. Tech., 22: 560–571.
  • Hough, PVC. 1959. Machine analysis of bubble chamber pictures. In the Proceedings of the 2nd International Conference on High- Energy Accelerators, pp: 554-558, Switzerland.
  • Hough, PVC. 1962. Method and means for recognizing complex patterns. US Patent 3069654-1962.
  • Nguyen, TD., Manh, QH., Minh, Pb., Thanh, LN., Hoang, TM. 2011. Efficient and reliable camera based multiple- choice test grading system. In the Proceedings of the International Conference on Advanced Technologies for Communications, pp: 268-271, Vietnam.
  • Rakesh, S., Kailash, A., Ashish, A. 2013. Cost effective optical mark reader. Int. J. Computer Sci. Artificial Int., 3(2): 44-49.
  • Sattayakawee, N. 2013. Test scoring for non-optical grid answer sheet based on projection profile method. Int. J. Info. Edu. Tech., 3(2): 273-277.
  • Zampirolli, FA., Gonzalez, JAQ., Neves, RPO. 2013. Automatic correction of multiple-choice tests using digital cameras and image processing. In the Proceedings of IX Workshop de Visão Computacional, pp: 1-6, Brazil. Total Time (min) 49.345
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gokhan Bayar This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 1

Cite

APA Bayar, G. (2016). The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers. Karaelmas Fen Ve Mühendislik Dergisi, 6(1), 100-104.
AMA Bayar G. The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers. Karaelmas Fen ve Mühendislik Dergisi. January 2016;6(1):100-104.
Chicago Bayar, Gokhan. “The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers”. Karaelmas Fen Ve Mühendislik Dergisi 6, no. 1 (January 2016): 100-104.
EndNote Bayar G (January 1, 2016) The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers. Karaelmas Fen ve Mühendislik Dergisi 6 1 100–104.
IEEE G. Bayar, “The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers”, Karaelmas Fen ve Mühendislik Dergisi, vol. 6, no. 1, pp. 100–104, 2016.
ISNAD Bayar, Gokhan. “The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers”. Karaelmas Fen ve Mühendislik Dergisi 6/1 (January 2016), 100-104.
JAMA Bayar G. The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers. Karaelmas Fen ve Mühendislik Dergisi. 2016;6:100–104.
MLA Bayar, Gokhan. “The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 6, no. 1, 2016, pp. 100-4.
Vancouver Bayar G. The Use of Hough Transform to Develop an Intelligent Grading System for the Multiple Choice Exam Papers. Karaelmas Fen ve Mühendislik Dergisi. 2016;6(1):100-4.