BibTex RIS Cite
Year 2013, Volume: 3 Issue: 2, 8 - 10, 01.06.2013

Abstract

References

  • Abdurashitov, JN. et al. [SAGE Collaboration] 1999. Measurement of the Solar Neutrino Capture Rate by SAGE and Implications for Neutrino Oscillations in Vacuum. Phys. Rev. Lett., 83: 4686-4689
  • Abe, S. et al. [KamLAND Collaboration] 2008. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Phys. Rev. Lett. 100: 221803
  • Abe, K. et al. [T2K Collaboration] 2011. Indication of Electron Neutrino Appearance from an Accelerator-Produced Off- Axis Muon Neutrino Beam. Phys. Rev. Lett., 107: 041801
  • Aharmim, B. et al. [SNO Collaboration] 2007. Measurement of the νe and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set. Phys. Rev. C, 75: 045502
  • Ahn, JK. et al. [RENO Collaboration] 2012. Comment on Phys. Rev. Lett. 108, 191802 (2012): “Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. ,108: 191802
  • Altmann, M. et al. [GNO Collaboration] 2005. Complete results for five years of GNO solar neutrino observations. Phys. Lett. B, 616:174-190
  • An, FP. et al. [DAYA-BAY Collaboration] 2012. Observation of Electron-Antineutrino Disappearance at Daya Bay. Phys. Rev. Lett., 108: 171803
  • must be in the LMA region, one can placed a limit on θ 13
  • Yılmaz / Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data 10
  • Anselmann, P. et al. [GALLEX Collaboration] 1994. GALLEX results from the first 30 solar neutrino runs. Phys. Lett. B, 327: 377-385
  • Araki, T. et al. [KamLAND Collaboration] 2005. Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion. Phys. Rev. Lett., 94: 081801
  • Balantekin, AB. 2012., Towards a very precise knowledge of theta13. [arXiv:hep-ph/1211.3069]
  • Balantekin, AB., Volpe, C. 2005. Does the neutrino magnetic moment have an impact on solar neutrino physics? Phys. Rev. D 72: 033008.
  • Balantekin, AB., Yilmaz, D. 2008. Contrasting solar and reactor neutrinos with a non-zero value of theta13. J. Phys. G, 35: 075007
  • Balantekin, AB., Yuksel, H. 2003. Global Analysis of Solar Neutrino and KamLAND Data. J. Phys. G, 29: 665-682.
  • Caldwell, DO., Sturrock, PA. 2005. Evidence for solar neutrino flux variability and its implications. Astropart. Phys., 23: 543- 556.
  • Cleveland, BT. , Daily, T. , Davis, R. Jr., Distel, JR., Lande, K., Lee, CK., Wildenhain, PS., Ullman, J. 1998. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. Astrophys. J. 496, 505-526.
  • Fogli , GL., Lisi, E., Montanino, D., Palazzo, A. 2000. Day- night asymmetry of high and low energy solar neutrino events in Super-Kamiokande and in the Sudbury Neutrino Observatory . Phys. Rev. D, 62: 013002
  • Fogli , GL., Lisi, E., Marrone, A., Palazzo, A., Rotunno, AM. 2008. Neutrino oscillations, global analysis and theta(13). Phys. Rev. Lett.,101: 141801.
  • Friedland, A., Lunardini, C. and Pena-Garay, C. 2004. Solar neutrinos as probes of neutrino-matter interactions. Phys., Lett., B,594: 347-354.
  • Fukuda, S. et al. [Super-Kamiokande Collaboration] 2002. Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data . Phys. Lett. B, 539: 179-187.
  • Kuo, TK., Pantaleone, JT. 1989. Neutrino Oscillations in Matter. Rev. Mod. Phys.,61: 937-979.
  • Loreti, FN., Balantekin, AB. 1994. Neutrino oscillations in noisy media. Phys. Rev. D, 50: 4762-4770.
  • Maki, Z., Nakagawa, M., Sakata, S. 1962. Remarks on the unified model of elementary particles. S., Prog. Theor. Phys.,28: 870-880.
  • Pontecorvo, B. 1957. Mesonium and anti-mesonium. Zh.Eksp. Teor.Fiz., 33: 549-551.

Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data

Year 2013, Volume: 3 Issue: 2, 8 - 10, 01.06.2013

Abstract

A joint analysis of solar neutrino data together with the new KamLAND data is presented with different confidence intervals and sin2 2θ13 values. It is investigated how the allowed regions are effected in those cases. Limits on sin2 2θ13 value are found at different confidence level intervals: sin2 2θ13 < 0.19, 0.23 at % 90 CL and % 95 CL respectively.

References

  • Abdurashitov, JN. et al. [SAGE Collaboration] 1999. Measurement of the Solar Neutrino Capture Rate by SAGE and Implications for Neutrino Oscillations in Vacuum. Phys. Rev. Lett., 83: 4686-4689
  • Abe, S. et al. [KamLAND Collaboration] 2008. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Phys. Rev. Lett. 100: 221803
  • Abe, K. et al. [T2K Collaboration] 2011. Indication of Electron Neutrino Appearance from an Accelerator-Produced Off- Axis Muon Neutrino Beam. Phys. Rev. Lett., 107: 041801
  • Aharmim, B. et al. [SNO Collaboration] 2007. Measurement of the νe and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set. Phys. Rev. C, 75: 045502
  • Ahn, JK. et al. [RENO Collaboration] 2012. Comment on Phys. Rev. Lett. 108, 191802 (2012): “Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. ,108: 191802
  • Altmann, M. et al. [GNO Collaboration] 2005. Complete results for five years of GNO solar neutrino observations. Phys. Lett. B, 616:174-190
  • An, FP. et al. [DAYA-BAY Collaboration] 2012. Observation of Electron-Antineutrino Disappearance at Daya Bay. Phys. Rev. Lett., 108: 171803
  • must be in the LMA region, one can placed a limit on θ 13
  • Yılmaz / Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data 10
  • Anselmann, P. et al. [GALLEX Collaboration] 1994. GALLEX results from the first 30 solar neutrino runs. Phys. Lett. B, 327: 377-385
  • Araki, T. et al. [KamLAND Collaboration] 2005. Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion. Phys. Rev. Lett., 94: 081801
  • Balantekin, AB. 2012., Towards a very precise knowledge of theta13. [arXiv:hep-ph/1211.3069]
  • Balantekin, AB., Volpe, C. 2005. Does the neutrino magnetic moment have an impact on solar neutrino physics? Phys. Rev. D 72: 033008.
  • Balantekin, AB., Yilmaz, D. 2008. Contrasting solar and reactor neutrinos with a non-zero value of theta13. J. Phys. G, 35: 075007
  • Balantekin, AB., Yuksel, H. 2003. Global Analysis of Solar Neutrino and KamLAND Data. J. Phys. G, 29: 665-682.
  • Caldwell, DO., Sturrock, PA. 2005. Evidence for solar neutrino flux variability and its implications. Astropart. Phys., 23: 543- 556.
  • Cleveland, BT. , Daily, T. , Davis, R. Jr., Distel, JR., Lande, K., Lee, CK., Wildenhain, PS., Ullman, J. 1998. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. Astrophys. J. 496, 505-526.
  • Fogli , GL., Lisi, E., Montanino, D., Palazzo, A. 2000. Day- night asymmetry of high and low energy solar neutrino events in Super-Kamiokande and in the Sudbury Neutrino Observatory . Phys. Rev. D, 62: 013002
  • Fogli , GL., Lisi, E., Marrone, A., Palazzo, A., Rotunno, AM. 2008. Neutrino oscillations, global analysis and theta(13). Phys. Rev. Lett.,101: 141801.
  • Friedland, A., Lunardini, C. and Pena-Garay, C. 2004. Solar neutrinos as probes of neutrino-matter interactions. Phys., Lett., B,594: 347-354.
  • Fukuda, S. et al. [Super-Kamiokande Collaboration] 2002. Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data . Phys. Lett. B, 539: 179-187.
  • Kuo, TK., Pantaleone, JT. 1989. Neutrino Oscillations in Matter. Rev. Mod. Phys.,61: 937-979.
  • Loreti, FN., Balantekin, AB. 1994. Neutrino oscillations in noisy media. Phys. Rev. D, 50: 4762-4770.
  • Maki, Z., Nakagawa, M., Sakata, S. 1962. Remarks on the unified model of elementary particles. S., Prog. Theor. Phys.,28: 870-880.
  • Pontecorvo, B. 1957. Mesonium and anti-mesonium. Zh.Eksp. Teor.Fiz., 33: 549-551.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Deniz Yılmaz This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 3 Issue: 2

Cite

APA Yılmaz, D. (2013). Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data. Karaelmas Fen Ve Mühendislik Dergisi, 3(2), 8-10.
AMA Yılmaz D. Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data. Karaelmas Fen ve Mühendislik Dergisi. June 2013;3(2):8-10.
Chicago Yılmaz, Deniz. “Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together With Reactor Data”. Karaelmas Fen Ve Mühendislik Dergisi 3, no. 2 (June 2013): 8-10.
EndNote Yılmaz D (June 1, 2013) Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data. Karaelmas Fen ve Mühendislik Dergisi 3 2 8–10.
IEEE D. Yılmaz, “Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data”, Karaelmas Fen ve Mühendislik Dergisi, vol. 3, no. 2, pp. 8–10, 2013.
ISNAD Yılmaz, Deniz. “Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together With Reactor Data”. Karaelmas Fen ve Mühendislik Dergisi 3/2 (June 2013), 8-10.
JAMA Yılmaz D. Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data. Karaelmas Fen ve Mühendislik Dergisi. 2013;3:8–10.
MLA Yılmaz, Deniz. “Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together With Reactor Data”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 3, no. 2, 2013, pp. 8-10.
Vancouver Yılmaz D. Upper Bound on θ13 from Combined Analysis of Solar Neutrino Data Together with Reactor Data. Karaelmas Fen ve Mühendislik Dergisi. 2013;3(2):8-10.