Research Article
BibTex RIS Cite

The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles

Year 2021, Volume: 11 Issue: 1, 73 - 82, 09.06.2021

Abstract

Supporting Institution

Scientific Research Coordination Unit of Pamukkale University

Project Number

2020BSP011

Thanks

This work is dedicated in memory of Professor Israfil Guseinov who was my PhD thesis advisor. He well adapted his great experience on mathematical analysis for use in quantum chemistry especially when exponential-type orbitals are considered as a basis sets. His works on this field for me in fact, is still a source of inspiration to find an effective and practical solution for a mathematical expression that came to impasse. He unfortunately, passed away in February of last year.

References

  • Abramowitz, M., & Stegun, IA. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, USA: Dover Publications.
  • Agmon, S. 1982. Lectures on Exponential Decay of solution of Second-Order Elliptic Equations: Bound on Eigenfunctions of N-body Schrödinger Operators. Princeton, USA: Princeton University Press.
  • Aksoy, S., Fırat, S., Ertürk, M. 2013. Chapter 8 - Further Improvements on PA-ETOs with Hyperbolic Cosine Functions and Their Effectiveness in Atomic Calculations. P. E. Hoggan (Dü.) içinde, Proceedings of MEST 2012: Exponential Type Orbitals for Molecular Electronic Structure Theory (Cilt 67, s. 217-230). Academic Press.
  • Avery, JE., Avery, JS. 2015. Chapter Six-Molecular Integrals for Exponential-Type Orbitals Using Hyperspherical Harmonics. J. R. Sabin (Dü.) içinde, Advances in Quantum Chemistry (Cilt 70, s. 265-324). London, Cambridge: Academic Press.
  • Bağcı, A. 2020. Advantages of Slater-type spinor orbitals in the Dirac-Hartree-Fock method. Results for hydrogen-like atoms with super-critical nuclear charge. Rend. Fis. Acc. Lincei, 31(2), 369-385. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-020-00899-6” 10.1007/s12210-020-00899-6
  • Bağcı, A., Hoggan, PE. 2016. Solution of the Dirac equation using the Rayleigh-Ritz method: Flexible basis coupling large and small components. Results for one-electron systems. Phys. Rev. E, 94(1), 013302. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevE.94.013302” 10.1103/ PhysRevE.94.013302
  • Bağcı, A., Hoggan, PE. 2014. Performance of numerical approximation on the calculation of overlap integrals with noninteger Slater-type orbitals. Phys. Rev. E, 89(5), 053307. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevE.89.053307” 10.1103/PhysRevE.89.053307
  • Bağcı, A., Hoggan, PE. 2015. Benchmark values for molecular two-electron integrals arising from the Dirac equation. Phys. Rev. E, 91(2), 023303. Doi: HYPERLINK “https://doi. org/10.1103/PhysRevE.91.023303” 10.1103/PhysRevE.91. 023303
  • Bağcı, A., Hoggan, PE. 2018. Analytical evaluation of relativistic molecular integrals. I. Auxiliary functions. Rend. Fis. Acc. Lincei, 29(1), 191-197. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-018-0669-8” 10.1007/s12210-018-0669-8
  • Bağcı, A., Hoggan, PE. 2020. Analytical evaluation of relativistic molecular integrals: III. Computation and results for molecular auxiliary functions. Rend. Fis. Acc. Lincei, accepted(online). Doi: HYPERLINK “https://doi.org/10.1007/s12210-020-00953- 3” 10.1007/s12210-020-00953-3
  • Bağcı, A., Hoggan, PE., Adak, M. 2018. Analytical evaluation of relativistic molecular integrals. II: Method of computation for molecular auxiliary functions involved. Rend. Fis. Acc. Lincei, 29(4), 765-775. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-018-0734-3” 10.1007/s12210-018-0734-3
  • Bouferguene, A., Fares, M., Hoggan, PE. 1996. STOP: A slater-type orbital package for molecular electronic structure determination. Int. J. Quant. Chem., 57(4), 801-810. Doi: HYPERLINK “https://doi.org/10.1002/(SICI)1097- 461X(1996)57:4%3c801::AID-QUA27%3e3.0.CO;2-0” 10.1002/(SICI)1097-461X(1996)57:4<801::AIDQUA27>3.0.CO;2-0
  • Boys, SF., Egerton, AC. 1950. Electronic wave functions-I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond., 200(163), 542-554. Doi: HYPERLINK “https://doi.org/10.1098/rspa.1950.0036” 10.1098/rspa.1950.0036
  • Bretin, C., Gazeau, JP. 1982. A Coulomb Sturmian basis for any spin. Physica A, 114(1), 428-432. Doi: HYPERLINK “https:// doi.org/10.1016/0378-4371(82)90326-0” 10.1016/0378- 4371(82)90326-0
  • Condon, EU., Shortley, GH. 1970. The Theory of Atomic Spectra. London, Cambridge, England: Cambridge University Press. Drake, GW., Yan, ZC. 1994. Variational eigenvalues for the S states of helium. Chem. Phys. Lett., 229(4), 486- 490. Doi: HYPERLINK “https://doi.org/10.1016/0009- 2614(94)01085-4” 10.1016/0009-2614(94)01085-4 Drake, GW. 2002. Progress in helium fine-structure calculations and the fine structure constant. Can. J. Phys., 80(11), 1195- 1212. Doi: HYPERLINK “https://doi.org/10.1139/p02-111” 10.1139/p02-111
  • Filter, E., Steinborn, EO. 1980. A matrix representation of the translation operator with respect to a basis set of exponentially declining functions. J. Math. Phys., 21(12), 2725-2736. Doi: HYPERLINK “https://doi.org/10.1063/1.524390” 10.1063/1.524390
  • Fock, VA. 1930a. “Selfconsistent field” mit Austausch für Natrium. Z. Phys., 62(11), 795-805. Doi: HYPERLINK “https://doi. org/10.1007/BF01330439” 10.1007/BF01330439
  • Fock, VA. 1930b. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys., 61(1), 126-148. Doi: HYPERLINK “https://doi.org/10.1007/ BF01340294” 10.1007/BF01340294
  • Gazeau, JP. 1980. The Dirac equation with arbitrary spin and mass, a simple and natural construction. J. Phys. G: Nuc. Phys., 6(12), 1459-1475. Doi: HYPERLINK “https://doi. org/10.1088/0305-4616/6/12/004” 10.1088/0305-4616/6/ 12/004
  • Gitman, D. M., Tyutin, IV., Voronov, BL. 2012. Self-adjoint extensions in quantum mechanics (Progress in Mathematical Physics b., Cilt 62). New York, USA: Springer.
  • Grant, IP. 2007. Relativistic Quantum Theory of Atoms and Molecules. New York, USA: Springer-Verlag. Guseinov, II. 1970. Analytical evaluation of two-centre Coulomb, hybrid and one-electron integrals for Slater-type orbitals. J. Phys. B: At. Mol. Phys., 3(11), 1399-1412. Doi: HYPERLINK “ h t t p s : / / d o i . o r g / 1 0 . 1 0 8 8 / 0 0 2 2 - 3 7 0 0 / 3 / 1 1 / 0 0 1 ” 10.1088/0022-3700/3/11/001
  • Guseinov, II. 1985. Evaluation of two-center overlap and nuclearattraction integrals for Slater-type orbitals. Phys. Rev. A, 32(3), 1864-1866. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.32.1864” 10.1103/PhysRevA.32.1864
  • Guseinov, II. 2002. New complete orthonormal sets of exponential-type orbitals and their application to translation of Slater orbitals. Int. J. Quant. Chem., 90(1), 114-118. Doi: HYPERLINK “https://doi.org/10.1002/qua.927” 10.1002/ qua.927
  • Guseinov, II. 2007. New Developments in Quantum Mechanics and Applications. AIP Conference Proceedings, 899, s. 65-68. Doi: HYPERLINK “https://doi.org/10.1063/1.2733044” 10.1063/1.2733044
  • Guseinov, II. 2012. New Complete Orthonormal Sets of Exponential-Type Orbitals in Standard Convention and Their Origin. Bull. Chem. Soc. Japan, 85(12), 1306-1309. Doi: HYPERLINK “https://doi.org/10.1246/bcsj.20120207” 10. 1246/bcsj.20120207
  • Guseinov, II., Mamedov, BA. 2007. On the Accurate Evaluation of Overlap Integrals over Slater Type Orbitals Using Analytical and Recurrence Relations. Z. Naturforsch., 62a(9), 467-470. Doi: HYPERLINK “https://doi.org/10.1515/zna2007-0901” 10.1515/zna-2007-0901
  • Guseinov, II., Şahin, E. 2010. Evaluation of one-electron molecular integrals over complete orthonormal sets of PAETO using auxiliary functions. Int. J. Quant. Chem., 110(10), 1803-1808. Doi: HYPERLINK “https://doi.org/10.1002/ qua.22369” 10.1002/qua.22369
  • Guseinov, II., Aydın, R., Bağcı, A. 2012. Calculation of overlap integrals over Slater-type spinor orbitals of arbitrary halfintegral spin using auxiliary functions. Phil. Mag., 92(18), 2375-2381. Doi: HYPERLINK “https://doi.org/10.1080/147 86435.2012.670284” 10.1080/14786435.2012.670284
  • Guseinov, II. 2007. Unified treatment of complete orthonormal sets for wave functions, and Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces. Phys. Lett. A, 372(1), 44-48. Doi: HYPERLINK “https://doi.org/10.1016/j.physleta.2007.07.005” 10.1016/j. physleta.2007.07.005
  • Guseinov, II. 2009. Theory of complete orthonormal sets of relativistic tensor wave functions and Slater tensor orbitals of particles with arbitrary spin in position, momentum and four-dimensional spaces. Phys. Lett. A, 373(25), 2178- 2181. Doi: HYPERLINK “https://doi.org/10.1016/j. physleta.2009.04.025” 10.1016/j.physleta.2009.04.025
  • Guseinov, II. 2010. Combined theory of two- and fourcomponent complete orthonormal sets of spinor wave functions and Slater type spinor orbitals in position, momentum and four-dimensional spaces. J. Math. Chem., 47(1), 391-402. Doi: HYPERLINK “https://doi.org/10.1007/s10910-009-9582-9” 10.1007/s10910-009-9582-9
  • Guseinov, II. 2011. Unified treatment of complex and real rotation-angular functions for two-center overlap integrals over arbitrary atomic orbitals. J. Math. Chem., 49(5), 1011- 1013. Doi: HYPERLINK “https://doi.org/10.1007/s10910- 010-9792-1” 10.1007/s10910-010-9792-1
  • Guseinov, II. 2012. New Complete Orthonormal Basis Sets of Relativistic Exponential Type Spinor Orbitals and Slater Spinor Functions of Particles with Arbitrary Half-Integral Spin in Position, Momentum and Four-Dimensional Spaces. arXiv. HYPERLINK “https://arxiv.org/abs/1008.5267” https://arxiv.org/abs/1008.5267 adresinden alındı
  • Guseinov, II., Aksu, H. 2008. Ground State Energy Calculations of Isoelectronic Series of He in Double-Zeta Approximation Using Coulomb Potential with Noninteger Indices. Chin. Phys. Lett., 25(3), 896-898. Doi: HYPERLINK “https:// doi.org/10.1088/0256-307X/25/3/025” 10.1088/0256- 307x/25/3/025
  • Guseinov, II., Şahin, E., Ertürk, M. 2014. An improvement on-exponential type orbitals for atoms in standard convention. Mol. Phys., 112(1), 35-40. Doi: HYPERLINK “https://doi.org/10.1080/00268976.2013.795665” 10.1080/00268976.2013.795665
  • Hartree, DR. 1928a. The Wave Mechanics of an Atom with a NonCoulomb Field. Part II. Some Results and Discussions. Math. Proc. Camb. Philos. Soc., 24(1), 111-132. Doi: HYPERLINK “https://doi.org/10.1017/S0305004100011920” 10.1017/ S0305004100011920
  • Hartree, DR. 1928b. The Wave Mechanics of an Atom with a NonCoulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Philos. Soc., 24(1), 89-110. Doi: HYPERLINK “https://doi.org/10.1017/S0305004100011919” 10.1017/ S0305004100011919
  • Hetherington, JH. 1984. Observations on the statistical iteration of matrices. Phys. Rev. A, 30(5), 2713-2719. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.30.2713” 10.1103/PhysRevA.30.2713
  • Hohenberg, P., Kohn, W. 1964. Inhomogeneous Electron Gas. Phys. Rev., 136(3B), B864-B871. Doi: HYPERLINK “https:// doi.org/10.1103/PhysRev.136.B864” 10.1103/PhysRev.136. B864
  • Hylleraas, EA. 1929. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von OrthoHelium. Z. Phys., 54(5), 347-366. Doi: HYPERLINK “https:// doi.org/10.1007/BF01375457” 10.1007/BF01375457
  • Ishikawa, Y., Baretty, R., Binning, RC. 1985. Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent. Chem. Phys. Lett., 121(1), 130- 133. Doi: HYPERLINK “https://doi.org/10.1016/0009- 2614(85)87169-4” 10.1016/0009-2614(85)87169-4
  • Kato, T. 1957. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math., 10(2), 151-177. Doi: HYPERLINK “https://doi.org/10.1002/ cpa.3160100201” 10.1002/cpa.3160100201
  • Korobov, VI. 2002. Regular and singular integrals for relativistic and QED matrix elements of the Coulomb three-body problem, for an exponential basis set. J. Phys. B: At. Mol. Opt. Phys., 35(8), 1959-1966. Doi: HYPERLINK “https:// doi.org/10.1088/0953-4075/35/8/312” 10.1088/0953- 4075/35/8/312
  • Kutzelnigg, W. 2012. Solved and unsolved problems in relativistic quantum chemistry. Chem. Phys., 395, 16- 34. Doi: HYPERLINK “https://doi.org/10.1016/j. chemphys.2011.06.001” 10.1016/j.chemphys.2011.06.001
  • Lee, YS., McLean, AD. 1982. Relativistic effects on Re and De in AgH and AuH from all-electron Dirac-Hartree-Fock calculations. J. Chem. Phys., 76(1), 735-736. Doi: HYPERLINK “https://doi.org/10.1063/1.442680” 10.1063/1.442680
  • Löwdin, PO., Shull, H. 1956. Natural orbitals in the quantum theory of two-electron systems. Phys. Rev., 101(6), 1730- 1739. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.101.1730” 10.1103/PhysRev.101.1730
  • Niederle, J., Nikitin, AG. 2006. The relativistic Coulomb problem for particles with arbitrary half-integer spin. J. Phys. A: Math. Gen., 39(33), 10931-10944. Doi: HYPERLINK “https://doi. org/10.1088/0305-4470/39/34/023” 10.1088/0305-4470/39/ 34/023
  • Pachucki, K. 2010. Born-Oppenheimer potential for H2 . Phys. Rev. A, 82(3), 032509. Doi: HYPERLINK “https://doi. org/10.1103/PhysRevA.82.032509” 10.1103/PhysRevA. 82.032509
  • Pachucki, K. 2012a. Born-Oppenheimer potential for HeH^{+}. Phys. Rev. A, 85(4), 042511. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.85.042511” 10.1103/ PhysRevA.85.042511
  • Pachucki, K. 2012b. Correlated exponential functions in highprecision calculations for diatomic molecules. Phys. Rev. A, 86(5), 052514. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.86.052514” 10.1103/PhysRevA.86.052514
  • Pachucki, K. 2013. Efficient approach to two-center exponential integrals with applications to excited states of molecular hydrogen. Phys. Rev. A, 88(2), 022507. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.88.022507” 10.1103/ PhysRevA.88.022507
  • Pomeranchuk, IY., Smorodinsky, YA. 1945. On energy levels in systems with Z >137. J. Phys. USSR, 9(2), 97-100.
  • Pople, JA., Beveridge, DL. 1970. Approximate Molecular Orbital Theory. New York, USA: Mc-Graw Hill.
  • Puchalski, M., Pachucki, K. 2006. Ground-state wave function and energy of the lithium atom. Phys. Rev. A, 73(2), 022503. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.73.022503” 10.1103/PhysRevA.73.022503
  • Puchalski, M., Pachucki, K. 2008. Relativistic, QED, and finite nuclear mass corrections for low-lying states of Li and Be^{+}. Phys. Rev. A, 78(5), 052511. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.78.052511” 10.1103/ PhysRevA.78.052511
  • Puchalski, M., Kędziera, D., Pachucki, K. 2010. Ionization potential for excited S states of the lithium atom. Phys. Rev. A, 82(6), 062509. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.82.062509” 10.1103/PhysRevA.82.062509
  • Reinhardt, P., Hoggan, PE. 2009. Cusps and derivatives for wave-functions expanded in Slater orbitals: A density study. Int. J. Quant. Chem., 109(14), 3191-3198. Doi: HYPERLINK “https://doi.org/10.1002/qua.22156” 10.1002/qua.22156
  • Rico, JF., López, R., Aguado, A., Ema, I., Ramirez, G. 2001. New program for molecular calculations with Slater-type orbitals. Int. J. Quant. Chem., 81(2), 148-153. Doi: HYPERLINK “https://doi.org/10.1002/1097- 461X(2001)81:2%3c148::AID-QUA6%3e3.0.CO;2-0” 10.1002/1097-461X(2001)81:2<148::AIDQUA6>3.0.CO;2-0
  • Roothaan, CC. 1951. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 23(2), 69-89. Doi: HYPERLINK “https://doi.org/10.1103/RevModPhys.23.69” 10.1103/ RevModPhys.23.69
  • Ruiz, MB. 2004. Hylleraas method for many-electron atoms. I. The Hamiltonian. Int. J. Quant. Chem., 101(3), 246-260. Doi: HYPERLINK “https://doi.org/10.1002/qua.20197” 10.1002/ qua.20197
  • Schwarz, WH., Wallmier, H. 1982. Basis set expansions of relativistic molecular wave equations. Mol. Phys., 46(5), 1045- 1061. Doi: HYPERLINK “https://doi.org/10.1080/0026897 8200101771”10.1080/00268978200101771
  • Shore, BW., Menzel, DH. 1968. Principles of Atomic Spectra. New York, USA: Wiley.
  • Shytov, AV., Katsnelson, MI., Levitov, LS. (2007). Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett., 99(23), 236801. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevLett.99.236801” 10.1103/ PhysRevLett.99.236801
  • Slater, JC. 1930a. Note on Hartree’s Method. Phys. Rev., 35(2), 210-211. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.35.210.2” 10.1103/PhysRev.35.210.2
  • Slater, JC. 1930b. Atomic Shielding Constants. Phys. Rev., 36(1), 57-64. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.36.57” 10.1103/PhysRev.36.57
  • Stanton, RE., Havriliak, S. 1984. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys., 81(4), 1910-1918. Doi: HYPERLINK “https:// doi.org/10.1063/1.447865” 10.1063/1.447865
  • Szmytkowski, R. 1997. The Dirac-Coulomb Sturmians and the series expansion of the Dirac-Coulomb Green function: application to the relativistic polarizability of the hydrogenlike atom. J. Phys. B: At. Mol. Opt. Phys., 30(4), 825-861. Doi: HYPERLINK “https://doi.org/10.1088/0953- 4075/30/4/007” 10.1088/0953-4075/30/4/007
  • Talman, JD. 2004. Overlap integrals for Dirac-Slater orbitals. Int. J. Quant. Chem., 100(2), 109-113. Doi: HYPERLINK “https://doi.org/10.1002/qua.10819” 10.1002/qua.10819
  • Trivedi, HP., Steinborn, EO. 1982. Numerical properties of a new translation formula for exponential-type functions and its application to one-electron multicenter integrals. Phys. Rev. A, 25(1), 113-127. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.25.113” 10.1103/PhysRevA.25.113
  • Wang, LM., Yan, ZC., Qiao, HX., Drake, GW. 2011. Variational upper bounds for low-lying states of lithium. Phys. Rev. A, 83(3), 034503. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.83.034503” 10.1103/PhysRevA.83.034503
  • Wang, L., Li, C., Yan, ZC., Drake, GW. 2014. Fine Structure and Ionization Energy of the 1s2s2p ^4 P State of the Helium Negative Ion He^{-}. Phys. Rev. Lett., 113(26), 263007. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevLett.113.263007” 10.1103/PhysRevLett.113.263007
  • Weniger, EJ. 1985. Weakly convergent expansions of a plane wave and their use in Fourier integrals. J. Math. Phys., 26(2), 276- 291. Doi: HYPERLINK “https://doi.org/10.1063/1.526970” 10.1063/1.526970
  • Wigner, EP. 1959. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. New York, USA: Academic Press. Yan, ZC., Drake, GW. 2002. Lithium transition energies and isotope shifts: QED recoil corrections. Phys. Rev. A, 66(4), 042504. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.66.042504” 10.1103/PhysRevA.66.042504
  • Yan, ZC., Drake, GW. 1995. Eigenvalues and expectation values for the 1s^2 2s^2S, 1s^2 2p^2 P, and 1s^2 3d^2 D states of lithium. Phys. Rev. A, 52(5), 3711-3717. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.52.3711” 10.1103/ PhysRevA.52.3711
  • Yan, ZC., Tambasco, M., Drake, GW. 1998. Energies and oscillator strengths for lithiumlike ions. Phys. Rev. A, 57(3), 1652-1661. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.57.1652” 10.1103/PhysRevA.57.1652 Zeldovich, YB., Popov, VS. 1972. Electronic structure of superheavy atoms. Phys. Uspekhi, 14(6), 673-694

Keyfi Yarım Spinli Parçacıklar için Rölativistik İki-Merkezli Örtme İntegrali

Year 2021, Volume: 11 Issue: 1, 73 - 82, 09.06.2021

Abstract

The relativistic Ψ^αs-exponential-type spinor orbitals for arbitrary half-integrals spin s, s=1/2,3/2,5/2,… particles is defined. The two-center overlap integrals of spin s=1/2 spinors are generalized to any half-integral spin. They are expressed in terms of non-relativistic Ψ^α-exponential-type orbitals introduced by Guseinov, where α=1,0,-1,-2,-3,…. The relativistic molecular auxiliary functions approximation derived in a previous paper by the author in [Physical Review E 2015; 91(2): 023303] is used for computation of the two-center integrals. The calculations are performed for spin s, s=1/2, s=3/2 and α=1,0,-1,-2,-3,-4,-5 for each value of spin. The coupling feature between lower- and upper-components of Ψ^αs-exponential-type spinor orbitals ensure that the kinetic-balance condition is fulfilled. It is shown that, the suggested relativistic basis spinors in the present study available to be used for algebraic solution of the generalized Dirac equation.

Project Number

2020BSP011

References

  • Abramowitz, M., & Stegun, IA. 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, USA: Dover Publications.
  • Agmon, S. 1982. Lectures on Exponential Decay of solution of Second-Order Elliptic Equations: Bound on Eigenfunctions of N-body Schrödinger Operators. Princeton, USA: Princeton University Press.
  • Aksoy, S., Fırat, S., Ertürk, M. 2013. Chapter 8 - Further Improvements on PA-ETOs with Hyperbolic Cosine Functions and Their Effectiveness in Atomic Calculations. P. E. Hoggan (Dü.) içinde, Proceedings of MEST 2012: Exponential Type Orbitals for Molecular Electronic Structure Theory (Cilt 67, s. 217-230). Academic Press.
  • Avery, JE., Avery, JS. 2015. Chapter Six-Molecular Integrals for Exponential-Type Orbitals Using Hyperspherical Harmonics. J. R. Sabin (Dü.) içinde, Advances in Quantum Chemistry (Cilt 70, s. 265-324). London, Cambridge: Academic Press.
  • Bağcı, A. 2020. Advantages of Slater-type spinor orbitals in the Dirac-Hartree-Fock method. Results for hydrogen-like atoms with super-critical nuclear charge. Rend. Fis. Acc. Lincei, 31(2), 369-385. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-020-00899-6” 10.1007/s12210-020-00899-6
  • Bağcı, A., Hoggan, PE. 2016. Solution of the Dirac equation using the Rayleigh-Ritz method: Flexible basis coupling large and small components. Results for one-electron systems. Phys. Rev. E, 94(1), 013302. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevE.94.013302” 10.1103/ PhysRevE.94.013302
  • Bağcı, A., Hoggan, PE. 2014. Performance of numerical approximation on the calculation of overlap integrals with noninteger Slater-type orbitals. Phys. Rev. E, 89(5), 053307. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevE.89.053307” 10.1103/PhysRevE.89.053307
  • Bağcı, A., Hoggan, PE. 2015. Benchmark values for molecular two-electron integrals arising from the Dirac equation. Phys. Rev. E, 91(2), 023303. Doi: HYPERLINK “https://doi. org/10.1103/PhysRevE.91.023303” 10.1103/PhysRevE.91. 023303
  • Bağcı, A., Hoggan, PE. 2018. Analytical evaluation of relativistic molecular integrals. I. Auxiliary functions. Rend. Fis. Acc. Lincei, 29(1), 191-197. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-018-0669-8” 10.1007/s12210-018-0669-8
  • Bağcı, A., Hoggan, PE. 2020. Analytical evaluation of relativistic molecular integrals: III. Computation and results for molecular auxiliary functions. Rend. Fis. Acc. Lincei, accepted(online). Doi: HYPERLINK “https://doi.org/10.1007/s12210-020-00953- 3” 10.1007/s12210-020-00953-3
  • Bağcı, A., Hoggan, PE., Adak, M. 2018. Analytical evaluation of relativistic molecular integrals. II: Method of computation for molecular auxiliary functions involved. Rend. Fis. Acc. Lincei, 29(4), 765-775. Doi: HYPERLINK “https://doi.org/10.1007/ s12210-018-0734-3” 10.1007/s12210-018-0734-3
  • Bouferguene, A., Fares, M., Hoggan, PE. 1996. STOP: A slater-type orbital package for molecular electronic structure determination. Int. J. Quant. Chem., 57(4), 801-810. Doi: HYPERLINK “https://doi.org/10.1002/(SICI)1097- 461X(1996)57:4%3c801::AID-QUA27%3e3.0.CO;2-0” 10.1002/(SICI)1097-461X(1996)57:4<801::AIDQUA27>3.0.CO;2-0
  • Boys, SF., Egerton, AC. 1950. Electronic wave functions-I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond., 200(163), 542-554. Doi: HYPERLINK “https://doi.org/10.1098/rspa.1950.0036” 10.1098/rspa.1950.0036
  • Bretin, C., Gazeau, JP. 1982. A Coulomb Sturmian basis for any spin. Physica A, 114(1), 428-432. Doi: HYPERLINK “https:// doi.org/10.1016/0378-4371(82)90326-0” 10.1016/0378- 4371(82)90326-0
  • Condon, EU., Shortley, GH. 1970. The Theory of Atomic Spectra. London, Cambridge, England: Cambridge University Press. Drake, GW., Yan, ZC. 1994. Variational eigenvalues for the S states of helium. Chem. Phys. Lett., 229(4), 486- 490. Doi: HYPERLINK “https://doi.org/10.1016/0009- 2614(94)01085-4” 10.1016/0009-2614(94)01085-4 Drake, GW. 2002. Progress in helium fine-structure calculations and the fine structure constant. Can. J. Phys., 80(11), 1195- 1212. Doi: HYPERLINK “https://doi.org/10.1139/p02-111” 10.1139/p02-111
  • Filter, E., Steinborn, EO. 1980. A matrix representation of the translation operator with respect to a basis set of exponentially declining functions. J. Math. Phys., 21(12), 2725-2736. Doi: HYPERLINK “https://doi.org/10.1063/1.524390” 10.1063/1.524390
  • Fock, VA. 1930a. “Selfconsistent field” mit Austausch für Natrium. Z. Phys., 62(11), 795-805. Doi: HYPERLINK “https://doi. org/10.1007/BF01330439” 10.1007/BF01330439
  • Fock, VA. 1930b. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys., 61(1), 126-148. Doi: HYPERLINK “https://doi.org/10.1007/ BF01340294” 10.1007/BF01340294
  • Gazeau, JP. 1980. The Dirac equation with arbitrary spin and mass, a simple and natural construction. J. Phys. G: Nuc. Phys., 6(12), 1459-1475. Doi: HYPERLINK “https://doi. org/10.1088/0305-4616/6/12/004” 10.1088/0305-4616/6/ 12/004
  • Gitman, D. M., Tyutin, IV., Voronov, BL. 2012. Self-adjoint extensions in quantum mechanics (Progress in Mathematical Physics b., Cilt 62). New York, USA: Springer.
  • Grant, IP. 2007. Relativistic Quantum Theory of Atoms and Molecules. New York, USA: Springer-Verlag. Guseinov, II. 1970. Analytical evaluation of two-centre Coulomb, hybrid and one-electron integrals for Slater-type orbitals. J. Phys. B: At. Mol. Phys., 3(11), 1399-1412. Doi: HYPERLINK “ h t t p s : / / d o i . o r g / 1 0 . 1 0 8 8 / 0 0 2 2 - 3 7 0 0 / 3 / 1 1 / 0 0 1 ” 10.1088/0022-3700/3/11/001
  • Guseinov, II. 1985. Evaluation of two-center overlap and nuclearattraction integrals for Slater-type orbitals. Phys. Rev. A, 32(3), 1864-1866. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.32.1864” 10.1103/PhysRevA.32.1864
  • Guseinov, II. 2002. New complete orthonormal sets of exponential-type orbitals and their application to translation of Slater orbitals. Int. J. Quant. Chem., 90(1), 114-118. Doi: HYPERLINK “https://doi.org/10.1002/qua.927” 10.1002/ qua.927
  • Guseinov, II. 2007. New Developments in Quantum Mechanics and Applications. AIP Conference Proceedings, 899, s. 65-68. Doi: HYPERLINK “https://doi.org/10.1063/1.2733044” 10.1063/1.2733044
  • Guseinov, II. 2012. New Complete Orthonormal Sets of Exponential-Type Orbitals in Standard Convention and Their Origin. Bull. Chem. Soc. Japan, 85(12), 1306-1309. Doi: HYPERLINK “https://doi.org/10.1246/bcsj.20120207” 10. 1246/bcsj.20120207
  • Guseinov, II., Mamedov, BA. 2007. On the Accurate Evaluation of Overlap Integrals over Slater Type Orbitals Using Analytical and Recurrence Relations. Z. Naturforsch., 62a(9), 467-470. Doi: HYPERLINK “https://doi.org/10.1515/zna2007-0901” 10.1515/zna-2007-0901
  • Guseinov, II., Şahin, E. 2010. Evaluation of one-electron molecular integrals over complete orthonormal sets of PAETO using auxiliary functions. Int. J. Quant. Chem., 110(10), 1803-1808. Doi: HYPERLINK “https://doi.org/10.1002/ qua.22369” 10.1002/qua.22369
  • Guseinov, II., Aydın, R., Bağcı, A. 2012. Calculation of overlap integrals over Slater-type spinor orbitals of arbitrary halfintegral spin using auxiliary functions. Phil. Mag., 92(18), 2375-2381. Doi: HYPERLINK “https://doi.org/10.1080/147 86435.2012.670284” 10.1080/14786435.2012.670284
  • Guseinov, II. 2007. Unified treatment of complete orthonormal sets for wave functions, and Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces. Phys. Lett. A, 372(1), 44-48. Doi: HYPERLINK “https://doi.org/10.1016/j.physleta.2007.07.005” 10.1016/j. physleta.2007.07.005
  • Guseinov, II. 2009. Theory of complete orthonormal sets of relativistic tensor wave functions and Slater tensor orbitals of particles with arbitrary spin in position, momentum and four-dimensional spaces. Phys. Lett. A, 373(25), 2178- 2181. Doi: HYPERLINK “https://doi.org/10.1016/j. physleta.2009.04.025” 10.1016/j.physleta.2009.04.025
  • Guseinov, II. 2010. Combined theory of two- and fourcomponent complete orthonormal sets of spinor wave functions and Slater type spinor orbitals in position, momentum and four-dimensional spaces. J. Math. Chem., 47(1), 391-402. Doi: HYPERLINK “https://doi.org/10.1007/s10910-009-9582-9” 10.1007/s10910-009-9582-9
  • Guseinov, II. 2011. Unified treatment of complex and real rotation-angular functions for two-center overlap integrals over arbitrary atomic orbitals. J. Math. Chem., 49(5), 1011- 1013. Doi: HYPERLINK “https://doi.org/10.1007/s10910- 010-9792-1” 10.1007/s10910-010-9792-1
  • Guseinov, II. 2012. New Complete Orthonormal Basis Sets of Relativistic Exponential Type Spinor Orbitals and Slater Spinor Functions of Particles with Arbitrary Half-Integral Spin in Position, Momentum and Four-Dimensional Spaces. arXiv. HYPERLINK “https://arxiv.org/abs/1008.5267” https://arxiv.org/abs/1008.5267 adresinden alındı
  • Guseinov, II., Aksu, H. 2008. Ground State Energy Calculations of Isoelectronic Series of He in Double-Zeta Approximation Using Coulomb Potential with Noninteger Indices. Chin. Phys. Lett., 25(3), 896-898. Doi: HYPERLINK “https:// doi.org/10.1088/0256-307X/25/3/025” 10.1088/0256- 307x/25/3/025
  • Guseinov, II., Şahin, E., Ertürk, M. 2014. An improvement on-exponential type orbitals for atoms in standard convention. Mol. Phys., 112(1), 35-40. Doi: HYPERLINK “https://doi.org/10.1080/00268976.2013.795665” 10.1080/00268976.2013.795665
  • Hartree, DR. 1928a. The Wave Mechanics of an Atom with a NonCoulomb Field. Part II. Some Results and Discussions. Math. Proc. Camb. Philos. Soc., 24(1), 111-132. Doi: HYPERLINK “https://doi.org/10.1017/S0305004100011920” 10.1017/ S0305004100011920
  • Hartree, DR. 1928b. The Wave Mechanics of an Atom with a NonCoulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Philos. Soc., 24(1), 89-110. Doi: HYPERLINK “https://doi.org/10.1017/S0305004100011919” 10.1017/ S0305004100011919
  • Hetherington, JH. 1984. Observations on the statistical iteration of matrices. Phys. Rev. A, 30(5), 2713-2719. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.30.2713” 10.1103/PhysRevA.30.2713
  • Hohenberg, P., Kohn, W. 1964. Inhomogeneous Electron Gas. Phys. Rev., 136(3B), B864-B871. Doi: HYPERLINK “https:// doi.org/10.1103/PhysRev.136.B864” 10.1103/PhysRev.136. B864
  • Hylleraas, EA. 1929. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von OrthoHelium. Z. Phys., 54(5), 347-366. Doi: HYPERLINK “https:// doi.org/10.1007/BF01375457” 10.1007/BF01375457
  • Ishikawa, Y., Baretty, R., Binning, RC. 1985. Relativistic Gaussian basis set calculations on one-electron ions with a nucleus of finite extent. Chem. Phys. Lett., 121(1), 130- 133. Doi: HYPERLINK “https://doi.org/10.1016/0009- 2614(85)87169-4” 10.1016/0009-2614(85)87169-4
  • Kato, T. 1957. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math., 10(2), 151-177. Doi: HYPERLINK “https://doi.org/10.1002/ cpa.3160100201” 10.1002/cpa.3160100201
  • Korobov, VI. 2002. Regular and singular integrals for relativistic and QED matrix elements of the Coulomb three-body problem, for an exponential basis set. J. Phys. B: At. Mol. Opt. Phys., 35(8), 1959-1966. Doi: HYPERLINK “https:// doi.org/10.1088/0953-4075/35/8/312” 10.1088/0953- 4075/35/8/312
  • Kutzelnigg, W. 2012. Solved and unsolved problems in relativistic quantum chemistry. Chem. Phys., 395, 16- 34. Doi: HYPERLINK “https://doi.org/10.1016/j. chemphys.2011.06.001” 10.1016/j.chemphys.2011.06.001
  • Lee, YS., McLean, AD. 1982. Relativistic effects on Re and De in AgH and AuH from all-electron Dirac-Hartree-Fock calculations. J. Chem. Phys., 76(1), 735-736. Doi: HYPERLINK “https://doi.org/10.1063/1.442680” 10.1063/1.442680
  • Löwdin, PO., Shull, H. 1956. Natural orbitals in the quantum theory of two-electron systems. Phys. Rev., 101(6), 1730- 1739. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.101.1730” 10.1103/PhysRev.101.1730
  • Niederle, J., Nikitin, AG. 2006. The relativistic Coulomb problem for particles with arbitrary half-integer spin. J. Phys. A: Math. Gen., 39(33), 10931-10944. Doi: HYPERLINK “https://doi. org/10.1088/0305-4470/39/34/023” 10.1088/0305-4470/39/ 34/023
  • Pachucki, K. 2010. Born-Oppenheimer potential for H2 . Phys. Rev. A, 82(3), 032509. Doi: HYPERLINK “https://doi. org/10.1103/PhysRevA.82.032509” 10.1103/PhysRevA. 82.032509
  • Pachucki, K. 2012a. Born-Oppenheimer potential for HeH^{+}. Phys. Rev. A, 85(4), 042511. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.85.042511” 10.1103/ PhysRevA.85.042511
  • Pachucki, K. 2012b. Correlated exponential functions in highprecision calculations for diatomic molecules. Phys. Rev. A, 86(5), 052514. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.86.052514” 10.1103/PhysRevA.86.052514
  • Pachucki, K. 2013. Efficient approach to two-center exponential integrals with applications to excited states of molecular hydrogen. Phys. Rev. A, 88(2), 022507. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.88.022507” 10.1103/ PhysRevA.88.022507
  • Pomeranchuk, IY., Smorodinsky, YA. 1945. On energy levels in systems with Z >137. J. Phys. USSR, 9(2), 97-100.
  • Pople, JA., Beveridge, DL. 1970. Approximate Molecular Orbital Theory. New York, USA: Mc-Graw Hill.
  • Puchalski, M., Pachucki, K. 2006. Ground-state wave function and energy of the lithium atom. Phys. Rev. A, 73(2), 022503. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.73.022503” 10.1103/PhysRevA.73.022503
  • Puchalski, M., Pachucki, K. 2008. Relativistic, QED, and finite nuclear mass corrections for low-lying states of Li and Be^{+}. Phys. Rev. A, 78(5), 052511. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.78.052511” 10.1103/ PhysRevA.78.052511
  • Puchalski, M., Kędziera, D., Pachucki, K. 2010. Ionization potential for excited S states of the lithium atom. Phys. Rev. A, 82(6), 062509. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.82.062509” 10.1103/PhysRevA.82.062509
  • Reinhardt, P., Hoggan, PE. 2009. Cusps and derivatives for wave-functions expanded in Slater orbitals: A density study. Int. J. Quant. Chem., 109(14), 3191-3198. Doi: HYPERLINK “https://doi.org/10.1002/qua.22156” 10.1002/qua.22156
  • Rico, JF., López, R., Aguado, A., Ema, I., Ramirez, G. 2001. New program for molecular calculations with Slater-type orbitals. Int. J. Quant. Chem., 81(2), 148-153. Doi: HYPERLINK “https://doi.org/10.1002/1097- 461X(2001)81:2%3c148::AID-QUA6%3e3.0.CO;2-0” 10.1002/1097-461X(2001)81:2<148::AIDQUA6>3.0.CO;2-0
  • Roothaan, CC. 1951. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 23(2), 69-89. Doi: HYPERLINK “https://doi.org/10.1103/RevModPhys.23.69” 10.1103/ RevModPhys.23.69
  • Ruiz, MB. 2004. Hylleraas method for many-electron atoms. I. The Hamiltonian. Int. J. Quant. Chem., 101(3), 246-260. Doi: HYPERLINK “https://doi.org/10.1002/qua.20197” 10.1002/ qua.20197
  • Schwarz, WH., Wallmier, H. 1982. Basis set expansions of relativistic molecular wave equations. Mol. Phys., 46(5), 1045- 1061. Doi: HYPERLINK “https://doi.org/10.1080/0026897 8200101771”10.1080/00268978200101771
  • Shore, BW., Menzel, DH. 1968. Principles of Atomic Spectra. New York, USA: Wiley.
  • Shytov, AV., Katsnelson, MI., Levitov, LS. (2007). Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett., 99(23), 236801. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevLett.99.236801” 10.1103/ PhysRevLett.99.236801
  • Slater, JC. 1930a. Note on Hartree’s Method. Phys. Rev., 35(2), 210-211. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.35.210.2” 10.1103/PhysRev.35.210.2
  • Slater, JC. 1930b. Atomic Shielding Constants. Phys. Rev., 36(1), 57-64. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRev.36.57” 10.1103/PhysRev.36.57
  • Stanton, RE., Havriliak, S. 1984. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys., 81(4), 1910-1918. Doi: HYPERLINK “https:// doi.org/10.1063/1.447865” 10.1063/1.447865
  • Szmytkowski, R. 1997. The Dirac-Coulomb Sturmians and the series expansion of the Dirac-Coulomb Green function: application to the relativistic polarizability of the hydrogenlike atom. J. Phys. B: At. Mol. Opt. Phys., 30(4), 825-861. Doi: HYPERLINK “https://doi.org/10.1088/0953- 4075/30/4/007” 10.1088/0953-4075/30/4/007
  • Talman, JD. 2004. Overlap integrals for Dirac-Slater orbitals. Int. J. Quant. Chem., 100(2), 109-113. Doi: HYPERLINK “https://doi.org/10.1002/qua.10819” 10.1002/qua.10819
  • Trivedi, HP., Steinborn, EO. 1982. Numerical properties of a new translation formula for exponential-type functions and its application to one-electron multicenter integrals. Phys. Rev. A, 25(1), 113-127. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.25.113” 10.1103/PhysRevA.25.113
  • Wang, LM., Yan, ZC., Qiao, HX., Drake, GW. 2011. Variational upper bounds for low-lying states of lithium. Phys. Rev. A, 83(3), 034503. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.83.034503” 10.1103/PhysRevA.83.034503
  • Wang, L., Li, C., Yan, ZC., Drake, GW. 2014. Fine Structure and Ionization Energy of the 1s2s2p ^4 P State of the Helium Negative Ion He^{-}. Phys. Rev. Lett., 113(26), 263007. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevLett.113.263007” 10.1103/PhysRevLett.113.263007
  • Weniger, EJ. 1985. Weakly convergent expansions of a plane wave and their use in Fourier integrals. J. Math. Phys., 26(2), 276- 291. Doi: HYPERLINK “https://doi.org/10.1063/1.526970” 10.1063/1.526970
  • Wigner, EP. 1959. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. New York, USA: Academic Press. Yan, ZC., Drake, GW. 2002. Lithium transition energies and isotope shifts: QED recoil corrections. Phys. Rev. A, 66(4), 042504. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.66.042504” 10.1103/PhysRevA.66.042504
  • Yan, ZC., Drake, GW. 1995. Eigenvalues and expectation values for the 1s^2 2s^2S, 1s^2 2p^2 P, and 1s^2 3d^2 D states of lithium. Phys. Rev. A, 52(5), 3711-3717. Doi: HYPERLINK “https://doi.org/10.1103/PhysRevA.52.3711” 10.1103/ PhysRevA.52.3711
  • Yan, ZC., Tambasco, M., Drake, GW. 1998. Energies and oscillator strengths for lithiumlike ions. Phys. Rev. A, 57(3), 1652-1661. Doi: HYPERLINK “https://doi.org/10.1103/ PhysRevA.57.1652” 10.1103/PhysRevA.57.1652 Zeldovich, YB., Popov, VS. 1972. Electronic structure of superheavy atoms. Phys. Uspekhi, 14(6), 673-694
There are 75 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ali Bağcı 0000-0001-7235-1713

Project Number 2020BSP011
Publication Date June 9, 2021
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Bağcı, A. (2021). The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles. Karaelmas Fen Ve Mühendislik Dergisi, 11(1), 73-82.
AMA Bağcı A. The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles. Karaelmas Fen ve Mühendislik Dergisi. June 2021;11(1):73-82.
Chicago Bağcı, Ali. “The Relativistic Two-Center Overlap Integrals of Arbitrary Half-Integral Spin Particles”. Karaelmas Fen Ve Mühendislik Dergisi 11, no. 1 (June 2021): 73-82.
EndNote Bağcı A (June 1, 2021) The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles. Karaelmas Fen ve Mühendislik Dergisi 11 1 73–82.
IEEE A. Bağcı, “The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles”, Karaelmas Fen ve Mühendislik Dergisi, vol. 11, no. 1, pp. 73–82, 2021.
ISNAD Bağcı, Ali. “The Relativistic Two-Center Overlap Integrals of Arbitrary Half-Integral Spin Particles”. Karaelmas Fen ve Mühendislik Dergisi 11/1 (June 2021), 73-82.
JAMA Bağcı A. The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles. Karaelmas Fen ve Mühendislik Dergisi. 2021;11:73–82.
MLA Bağcı, Ali. “The Relativistic Two-Center Overlap Integrals of Arbitrary Half-Integral Spin Particles”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 11, no. 1, 2021, pp. 73-82.
Vancouver Bağcı A. The Relativistic Two-center Overlap Integrals of Arbitrary Half-Integral Spin Particles. Karaelmas Fen ve Mühendislik Dergisi. 2021;11(1):73-82.