Araştırma Makalesi
BibTex RIS Kaynak Göster

38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri

Yıl 2021, Cilt: 11 Sayı: 2, 114 - 122, 15.12.2021

Öz

Bu çalışmada, Ni6PtnCu32-n (n=0-32) üçlü nanoalaşımların global optimizasyonları atomlar arası etkileşmeler Gupta çok cisim potansiyeli
ile modellenerek ve Basin-Hopping algoritması kullanılarak gerçekleştirilmiştir. Nanoalaşımların kararlılığı fazlalık enerji analizi ve
bağ sayısı analizi ile incelenmiştir. Optimizasyon sonucunda elde edilen tüm kompozisyonların global minimum yapıları, Moleküler
Dinamik (MD) simülasyonlarında başlangıç konfigürasyonları olarak alınmıştır. Ni6PtnCu32-n (n=0-32) üçlü nanoalaşımlarının erime
sıcaklıkları Kanonik topluluk (NVT) koşullarında MD simülasyonları ile incelenmiştir. Erime geçişlerini belirlemek için kalorik eğri
ve Lindemann kriteri kullanılmıştır. Ni6PtnCu32-n (n=0-32) üçlü nanoalaşımların MD simülasyonları sonucunda erime sıcaklıklarının
kompozisyona bağlı olarak dalgalanmalar gösterdiği tespit edilmiştir. Ayrıca, erime sürecinde optimizasyon sonucunda elde edilen en
kararlı kompozisyonların dinamik davranışları Bağ-Açı analizi (BAA) ve kare ortalama yer değiştirmelerin karekökü (RMSD) gibi
farklı analiz yöntemleri ile incelenmiştir.

Kaynakça

  • Referans1 Ackland, G. J., Jones, A. P., 2006. Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B, 73, 054104. https://doi.org/10.1103/PhysRevB.73.054104
  • Referans2 Arslan, H., Garip, A. K., Johnston, R. L., 2015. Theoretical Study of the Structures and Chemical Ordering of Cobalt-Palladium Nanoclusters. Phys. Chem. Chem. Phys., 17, 28311-28321. https://doi.org/10.1039/C5CP01029B
  • Referans3 Bruma, A., Ismail, R., Paz-Borbon, L. O., Arslan, H., Barcaro, G., Fortunelli, A., Li, Z. Y., Johnston, R. L., 2013. DFT study of the structures and energetics of 98-atom AuPd clusters. Nanoscale, 5, 646-652. https://doi.org/10.1039/C2NR32517A
  • Referans4 Bush, I. J., Todorov, I. T., Smith, W., 2006. DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method. Comput. Phys. Commun., 175(5), 323-329. https://doi.org/10.1016/j.cpc.2006.05.001
  • Referans5 Cao, X., Han, Y., Gao, C., Xu, Y., Huang, X., Willander, M., Wang, N., 2014. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy, 9, 301–308. https://doi.org/10.1016/j.nanoen.2014.08.008
  • Referans6 Cao, L., Zhao, Z., Liu, Z., Gao, W., Dai, S., Gha, J., Xue, W., Sun, H., Duan, X., Pan, X., Mueller, T., Huang, Y., 2019. Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 1(6), 1567-1580. https://doi.org/10.1016/j.matt.2019.07.015
  • Referans7 Carpenter, M. K., Moylan, T. E., Kukreja, R. S., Atwan, M. H., Tessema, M. M., 2012. Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. J. Am. Chem. Soc., 134 (20), 8535–8542. https://doi.org/10.1021/ja300756y
  • Referans8 Chaves, A. S., Rondina, G. G., Piotrowski, M. J., Da Silva J. L. F., 2015. Structural formation of binary PtCu clusters: A density functional theory investigation. Comput. Mater. Sci., 98, 278–286. https://doi.org/10.1016/j.commatsci.2014.11.022
  • Referans9 Cleri, F., Rosato, V., 1993. Tight-binding potentials for transition metals and alloys. Phys. Rev. B, 48(1), 22-33. https://doi.org/10.1103/PhysRevB.48.22
  • Referans10 Cuevas-Muniz, F. M., Gurrola, M. P., Tellez-Vazguez, O., Esparza, R., Guerra-Balcazar, M., Arriaga, L. G., Ledesma-Garcia, J., 2015. Correlation between theoretical data and experimental selective properties of PtAg core-shell nanoparticles for oxygen reduction reactions. Int. J. Hydrog. Energy, 40(48):17284–17290. https://doi.org/10.1016/j.ijhydene.2015.06.096
  • Referans11 Deng, L., Hu, W., Deng, H., Xiao, S., 2010. Surface Segregation and Structural Features of Bimetallic Au-Pt Nanoparticles. J. Phys. Chem. C, 114(25), 11026-11032. https://doi.org/10.1021/jp100194p
  • Referans12 Fu, G., Xia, B., Ma, R., Chen, Y., Tang, Y., Lee, J., 2015. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 12, 824–832. https://doi.org/10.1016/j.nanoen.2015.01.041
  • Referans13 Fundora-Galano, G., Orgaz, E., 2018. Structural stability of binary Pd34-nMn (M=Cu, Ag, Au) clusters. Theor. Chem. Acc., 137(6). https://doi.org/10.1007/s00214-018-2268-2
  • Referans14 Garip, A. K., 2018. A Molecular Dynamics Study: Structures and Thermal Stability of PdmPt(13-m)Ag42 ternary nanoalloys. Int. J. Mod. Phys. C, 29 (09), 1850084. https://doi.org/10.1142/S0129183118500845
  • Referans15 Garip, A. K., 2019. The composition effect for the thermal properties of PdnAg(42-n)Pt13 ternary nanoalloys: a molecular dynamics study. Mol. Simul., 45 (13), 1004-1013. https://doi.org/10.1080/08927022.2019.1627347
  • Referans16 Goh, J., Akola, J., Ferrando, R., 2017. Geometric Structure and Chemical Ordering of Large AuCu Clusters: A Computational Study. J. Phys. Chem. C, 121(20), 10809-10816. https://doi.org/10.1021/acs.jpcc.6b11958
  • Referans17 Gould, A. L., Heard, C. J., Logsdail, A. J., Catlow, C. R. A., 2014. Segregation effects on the properties of (AuAg)147. Phys. Chem. Chem. Phys., 16(39), 21049-21061. https://doi.org/10.1039/c4cp00753k
  • Referans18 Gupta, R. P., 1981. Lattice relaxation at a metal surface. Phys. Rev. B, 23, 6265. https://doi.org/10.1103/PhysRevB.23.6265
  • Referans19 Herault, N., Olivet, L., Pirault-Roy, L., Especel, C., Vicerich, M. A., Pieck, C. L., Epron, F., 2016. Controlled preparation and characterization of Pt-Rh/Al2O3 bimetalliccatalysts for reactions in reducing conditions. Appl. Catal. A., 517, 81–90. https://doi.org/10.1016/j.apcata.2016.02.024
  • Referans20 Hong, W., Shang, C., Wang, J., Wang, E., 2015. Trimetallic PtCuCo hollow nanospheres with a dendritic shell for enhanced electrocatalytic activity toward ethylene glycol electrooxidation. Nanoscale, 7, 9985-9989. https://doi.org/10.1039/C5NR01679G
  • Referans21 Jindal, S., Chiriki, S., Bulusu, S. S., 2017. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster. J. Chem. Phys., 146, 204301. https://doi.org/10.1063/1.4983392
  • Referans22 Kang, J., Chen, T., Zhang, D., Guo, L., 2016. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy, 23, 145-152. https://doi.org/10.1016/j.nanoen.2016.03.017
  • Referans23 Kittel C., 2004. Introduction to Solid State Physics. 8. Edition, Wiley, 704 s.
  • Referans24 Lan, J., Li, C., Liu, T., Yuan, Q., 2019. One-step Synthesis of Porous PtNiCu trimetallic Nanoalloy with Enhanced Electrocatalytic Performance toward Methanol Oxidation. J. S. Chem. Soc., 23 (1), 43-51. https://doi.org/10.1016/j.jscs.2018.04.002
  • Referans25 Magalhaes, M. M., Colmati, F., 2014. Carbon-Supported PtSnCu, PtCu and PtSn Electrocatalysts for Ethanol Oxidation in Acid Media. J. Braz. Chem. Soc., 25(8). https://doi.org/10.5935/0103-5053.20140111
  • Referans26 Mao, J., Cao, T., Chen, Y., Wu, Y., Chen, C., Peng, Q., Wang, D., Li, Y., 2015. Seed-mediated Synthesis of Hexameric Octahedral PtPdCu Nanocrystals with High Electrocatalytic Performance. Chem Comm., 51(84), 15406-15409. https://doi.org/10.1039/c5cc06740e
  • Referans27 Noh, S. H., Han, B., Ohsaka, T., 2015. First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res., 8, 3394-3403. https://doi.org/10.1007/s12274-015-0839-2
  • Referans28 Park, H., Kim, D., Kim, H., Oh, S., Jung, W. S., Kim, S., 2020. Binder-coated electrodeposited PtNiCu catalysts for the oxygen reduction reaction in high-temperature polymer electrolyte membrane fuel cells. Appl. Surf. Sci, 510, 145444. https://doi.org/10.1016/j.apsusc.2020.145444
  • Referans29 Pawlow, P., 1909. Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z. Phys. Chem., 65, 545, 1-35. https://doi.org/10.1515/zpch-1909-6502
  • Referans30 Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  • Referans31 Stukowski, A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng., 20(4), 045021. https://doi.org/10.1088/0965-0393/20/4/045021
  • Referans32 Tao, J., Ji, Q., Shao, G., Li, Z., Liu, T., Wen, Y., 2017. Stable structure optimization of Pt-X-Cu (X=Au, Ag, Pd and Rh) trimetallic nanoparticles. J. Alloys Compd., 716, 240-250. https://doi.org/10.1016/j.jallcom.2017.04.300
  • Referans33 Taran, S., 2019. 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1204-1216. https://doi.org/10.29130/dubited.512614
  • Referans34 Taran, S., Garip, A. K. ve Arslan., H., 2020. Investigation of the Chemical Ordering And Structural Properties of the Trimetallic (PtNi)@Ag Nanoalloys. J. Clust. Sci., https://doi.org/10.1007/s10876-020-01778-8
  • Referans35 Todorov, I. T., Smith, W., Trachenko, K., Dove M. T., 2006. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem., 16(20), 1911-1918. https://doi.org/10.1039/B517931A
  • Referans36 Wales, D. J., Doye, J. P. K., 1997. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. A, 101(28), 5111-5116. https://doi.org/10.1021/jp970984n
  • Referans37 Wang, M., He, Y., Li, R., Ma, Z., Zhang, Z., Wang, X., 2015. Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim. Acta, 178, 259–269. https://doi.org/10.1016/j.electacta.2015.07.157
  • Referans38 Wang, L., Yang, Y., Wang, N., Huang, S., 2016. Theoretical investigation of structural, electronic and magnetic properties for PtnNi55-n (n=0–55) nanoparticles. Comput. Mater. Sci., 117, 15–23. https://doi.org/10.1016/j.commatsci.2016.01.016
  • Referans39 Wilson, N. T., Johnston, R. L., 2002. A theoretical study of atom ordering in copper–gold nanoalloy clusters. J. Mater. Chem., 12, 2913–2922. https://doi.org/10.1039/B204069G
  • Referans40 Wu, G., Liu, Q., Wu, X., 2015. Geometrical and energetic properties in 38-atom trimetallic Au–Pd–Pt clusters. Chem. Phys. Lett., 620, 92-97. https://doi.org/10.1016/j.cplett.2014.12.022
  • Referans41 Wu, G., Sun, Y., Wu, X., Chen, R., Wang, Y., 2017. Large scale structural optimization of trimetallic Cu–Au–Pt clusters up to 147 atoms. Chem. Phys. Lett., 686, 103-110. https://doi.org/10.1016/j.cplett.2017.08.049
  • Referans42 Wu, D., Zhang, W., Lin, A., Cheng, D., 2020. Low Pt-content ternary PtNiCu nanoparticles with hollow interiors and accessible surfaces as enhanced multifunctional electrocatalysts. ACS Appl. Mater. Interfaces, 12, 8, 9600–9608. https://doi.org/10.1021/acsami.9b20076
  • Referans43 Xia, Z., Li, C. M., Dai, L., 2019. Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability. Matter, 1, 1445–1455. https://doi.org/10.1016/j.matt.2019.11.009
  • Referans44 Yang, Y., Zhao, Z., Zhu, J., Cheng, D., 2020. Effect of Size and Composition on the Structural Stability of Pt–Ni Nanoalloys. J. Clust. Sci., 31, 609–614. https://doi.org/10.1007/s10876-019-01502-1
  • Referans45 Yıldırım, H., Arslan, H., 2019. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. BAUN Fen Bil. Enst. Dergisi, 21(1), 336-351. https://doi.org/10.25092/baunfbed.547194
  • Referans46 Yıldırım, H., Arslan, H., 2020. Size and composition effect on structural properties and melting behaviors of Cu–Ag–Au ternary nanoalloys. Int. J. Mod. Phys. C, 31:(06), 2050078. https://doi.org/10.1142/S0129183120500783
  • Referans47 Yousaf, A. B., Alsaydeh, S. A. M., Zavahir, F. S., Kasak, P., Zaidi, J., 2018. Ultra-low Pt-decorated NiCu bimetallic alloys nanoparticles supported on reduced graphene oxide for electro-oxidation of methanol. MRS Communications, 8(03):1-8. https://doi.org/10.1557/mrc.2018.140
  • Referans48 Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., Wang, X., Wang, H., Wang, M., Su, H., Li, D., Li, X., Qin, Y., 2015. One-Pot Synthesis of Ternary Pt−Ni−Cu Nanocrystals with High Catalytic Performance. Chem. Mater., 27(18), 6402-6410. https://doi.org/10.1021/acs.chemmater.5b02575
  • Referans49 Zhang, P., Hu, Y., Li, B., Zhang, Q., Zhou, C., Yu, H., Zhang, X., Chen, L., Eichhorn, B., Zhou, S., 2015. Kinetically Stabilized Pd@Pt Core−Shell Octahedral Nanoparticles with Thin Pt Layers for Enhanced Catalytic Hydrogenation Performance. ACS Catal., 5 (2), 1335–1343. https://doi.org/10.1021/cs501612g
  • Referans50 Zhang, H., Wang, H., Cao, J., Ni, Y., 2017. Hierarchical Cu-Ni-Pt dendrites: Two-step electrodeposition and highly catalytic performances. J. Alloys Compd., 698, 654-661. https://doi.org/10.1016/j.jallcom.2016.12.212
  • Referans51 Zheng, J., 2017. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts. Appl. Surf. Sci., 413, 360-365. https://doi.org/10.1016/j.apsusc.2017.03.285

Structural and Dynamic Properties of 38-atom Ni-Pt-Cu Ternary Nanoalloys

Yıl 2021, Cilt: 11 Sayı: 2, 114 - 122, 15.12.2021

Öz

In this study, global optimizations of Ni6PtnCu32-n (n=0-32) ternary nanoalloys were performed by modelling interatomic interactions
with Gupta many-body potential and by Basin Hopping algorithm. Stability of nanoalloys were investigated with the excess energy
analysis and bond number analysis. The global minimum structures of all compositions obtained as a result of optimization were
taken as the initial configurations in Molecular Dynamics (MD) simulations. Melting temperatures of Ni6PtnCu32-n (n=0-32) ternary
nanoalloys were investigated with the MD simulations in canonical ensemble conditions (NVT). Caloric curve and Lindemann
index were used to determine the melting transitions. As a result of MD simulations of Ni6PtnCu32-n (n=0-32) ternary nanoalloys, it
was determined that the melting temperatures fluctuate depending on the composition. Also, dynamic behaviours of the most stable
composition obtained as a result of optimization in melting process investigated by different analysis method such as Bond-angle
analysis (BAA) and root mean square displacement (RMSD).

Kaynakça

  • Referans1 Ackland, G. J., Jones, A. P., 2006. Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B, 73, 054104. https://doi.org/10.1103/PhysRevB.73.054104
  • Referans2 Arslan, H., Garip, A. K., Johnston, R. L., 2015. Theoretical Study of the Structures and Chemical Ordering of Cobalt-Palladium Nanoclusters. Phys. Chem. Chem. Phys., 17, 28311-28321. https://doi.org/10.1039/C5CP01029B
  • Referans3 Bruma, A., Ismail, R., Paz-Borbon, L. O., Arslan, H., Barcaro, G., Fortunelli, A., Li, Z. Y., Johnston, R. L., 2013. DFT study of the structures and energetics of 98-atom AuPd clusters. Nanoscale, 5, 646-652. https://doi.org/10.1039/C2NR32517A
  • Referans4 Bush, I. J., Todorov, I. T., Smith, W., 2006. DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method. Comput. Phys. Commun., 175(5), 323-329. https://doi.org/10.1016/j.cpc.2006.05.001
  • Referans5 Cao, X., Han, Y., Gao, C., Xu, Y., Huang, X., Willander, M., Wang, N., 2014. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy, 9, 301–308. https://doi.org/10.1016/j.nanoen.2014.08.008
  • Referans6 Cao, L., Zhao, Z., Liu, Z., Gao, W., Dai, S., Gha, J., Xue, W., Sun, H., Duan, X., Pan, X., Mueller, T., Huang, Y., 2019. Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 1(6), 1567-1580. https://doi.org/10.1016/j.matt.2019.07.015
  • Referans7 Carpenter, M. K., Moylan, T. E., Kukreja, R. S., Atwan, M. H., Tessema, M. M., 2012. Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis. J. Am. Chem. Soc., 134 (20), 8535–8542. https://doi.org/10.1021/ja300756y
  • Referans8 Chaves, A. S., Rondina, G. G., Piotrowski, M. J., Da Silva J. L. F., 2015. Structural formation of binary PtCu clusters: A density functional theory investigation. Comput. Mater. Sci., 98, 278–286. https://doi.org/10.1016/j.commatsci.2014.11.022
  • Referans9 Cleri, F., Rosato, V., 1993. Tight-binding potentials for transition metals and alloys. Phys. Rev. B, 48(1), 22-33. https://doi.org/10.1103/PhysRevB.48.22
  • Referans10 Cuevas-Muniz, F. M., Gurrola, M. P., Tellez-Vazguez, O., Esparza, R., Guerra-Balcazar, M., Arriaga, L. G., Ledesma-Garcia, J., 2015. Correlation between theoretical data and experimental selective properties of PtAg core-shell nanoparticles for oxygen reduction reactions. Int. J. Hydrog. Energy, 40(48):17284–17290. https://doi.org/10.1016/j.ijhydene.2015.06.096
  • Referans11 Deng, L., Hu, W., Deng, H., Xiao, S., 2010. Surface Segregation and Structural Features of Bimetallic Au-Pt Nanoparticles. J. Phys. Chem. C, 114(25), 11026-11032. https://doi.org/10.1021/jp100194p
  • Referans12 Fu, G., Xia, B., Ma, R., Chen, Y., Tang, Y., Lee, J., 2015. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 12, 824–832. https://doi.org/10.1016/j.nanoen.2015.01.041
  • Referans13 Fundora-Galano, G., Orgaz, E., 2018. Structural stability of binary Pd34-nMn (M=Cu, Ag, Au) clusters. Theor. Chem. Acc., 137(6). https://doi.org/10.1007/s00214-018-2268-2
  • Referans14 Garip, A. K., 2018. A Molecular Dynamics Study: Structures and Thermal Stability of PdmPt(13-m)Ag42 ternary nanoalloys. Int. J. Mod. Phys. C, 29 (09), 1850084. https://doi.org/10.1142/S0129183118500845
  • Referans15 Garip, A. K., 2019. The composition effect for the thermal properties of PdnAg(42-n)Pt13 ternary nanoalloys: a molecular dynamics study. Mol. Simul., 45 (13), 1004-1013. https://doi.org/10.1080/08927022.2019.1627347
  • Referans16 Goh, J., Akola, J., Ferrando, R., 2017. Geometric Structure and Chemical Ordering of Large AuCu Clusters: A Computational Study. J. Phys. Chem. C, 121(20), 10809-10816. https://doi.org/10.1021/acs.jpcc.6b11958
  • Referans17 Gould, A. L., Heard, C. J., Logsdail, A. J., Catlow, C. R. A., 2014. Segregation effects on the properties of (AuAg)147. Phys. Chem. Chem. Phys., 16(39), 21049-21061. https://doi.org/10.1039/c4cp00753k
  • Referans18 Gupta, R. P., 1981. Lattice relaxation at a metal surface. Phys. Rev. B, 23, 6265. https://doi.org/10.1103/PhysRevB.23.6265
  • Referans19 Herault, N., Olivet, L., Pirault-Roy, L., Especel, C., Vicerich, M. A., Pieck, C. L., Epron, F., 2016. Controlled preparation and characterization of Pt-Rh/Al2O3 bimetalliccatalysts for reactions in reducing conditions. Appl. Catal. A., 517, 81–90. https://doi.org/10.1016/j.apcata.2016.02.024
  • Referans20 Hong, W., Shang, C., Wang, J., Wang, E., 2015. Trimetallic PtCuCo hollow nanospheres with a dendritic shell for enhanced electrocatalytic activity toward ethylene glycol electrooxidation. Nanoscale, 7, 9985-9989. https://doi.org/10.1039/C5NR01679G
  • Referans21 Jindal, S., Chiriki, S., Bulusu, S. S., 2017. Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster. J. Chem. Phys., 146, 204301. https://doi.org/10.1063/1.4983392
  • Referans22 Kang, J., Chen, T., Zhang, D., Guo, L., 2016. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy, 23, 145-152. https://doi.org/10.1016/j.nanoen.2016.03.017
  • Referans23 Kittel C., 2004. Introduction to Solid State Physics. 8. Edition, Wiley, 704 s.
  • Referans24 Lan, J., Li, C., Liu, T., Yuan, Q., 2019. One-step Synthesis of Porous PtNiCu trimetallic Nanoalloy with Enhanced Electrocatalytic Performance toward Methanol Oxidation. J. S. Chem. Soc., 23 (1), 43-51. https://doi.org/10.1016/j.jscs.2018.04.002
  • Referans25 Magalhaes, M. M., Colmati, F., 2014. Carbon-Supported PtSnCu, PtCu and PtSn Electrocatalysts for Ethanol Oxidation in Acid Media. J. Braz. Chem. Soc., 25(8). https://doi.org/10.5935/0103-5053.20140111
  • Referans26 Mao, J., Cao, T., Chen, Y., Wu, Y., Chen, C., Peng, Q., Wang, D., Li, Y., 2015. Seed-mediated Synthesis of Hexameric Octahedral PtPdCu Nanocrystals with High Electrocatalytic Performance. Chem Comm., 51(84), 15406-15409. https://doi.org/10.1039/c5cc06740e
  • Referans27 Noh, S. H., Han, B., Ohsaka, T., 2015. First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res., 8, 3394-3403. https://doi.org/10.1007/s12274-015-0839-2
  • Referans28 Park, H., Kim, D., Kim, H., Oh, S., Jung, W. S., Kim, S., 2020. Binder-coated electrodeposited PtNiCu catalysts for the oxygen reduction reaction in high-temperature polymer electrolyte membrane fuel cells. Appl. Surf. Sci, 510, 145444. https://doi.org/10.1016/j.apsusc.2020.145444
  • Referans29 Pawlow, P., 1909. Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z. Phys. Chem., 65, 545, 1-35. https://doi.org/10.1515/zpch-1909-6502
  • Referans30 Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  • Referans31 Stukowski, A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng., 20(4), 045021. https://doi.org/10.1088/0965-0393/20/4/045021
  • Referans32 Tao, J., Ji, Q., Shao, G., Li, Z., Liu, T., Wen, Y., 2017. Stable structure optimization of Pt-X-Cu (X=Au, Ag, Pd and Rh) trimetallic nanoparticles. J. Alloys Compd., 716, 240-250. https://doi.org/10.1016/j.jallcom.2017.04.300
  • Referans33 Taran, S., 2019. 13 Atomlu Cu-Au-Pt Üçlü Metal Nanoalaşımların Yapısal Özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1204-1216. https://doi.org/10.29130/dubited.512614
  • Referans34 Taran, S., Garip, A. K. ve Arslan., H., 2020. Investigation of the Chemical Ordering And Structural Properties of the Trimetallic (PtNi)@Ag Nanoalloys. J. Clust. Sci., https://doi.org/10.1007/s10876-020-01778-8
  • Referans35 Todorov, I. T., Smith, W., Trachenko, K., Dove M. T., 2006. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem., 16(20), 1911-1918. https://doi.org/10.1039/B517931A
  • Referans36 Wales, D. J., Doye, J. P. K., 1997. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. A, 101(28), 5111-5116. https://doi.org/10.1021/jp970984n
  • Referans37 Wang, M., He, Y., Li, R., Ma, Z., Zhang, Z., Wang, X., 2015. Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim. Acta, 178, 259–269. https://doi.org/10.1016/j.electacta.2015.07.157
  • Referans38 Wang, L., Yang, Y., Wang, N., Huang, S., 2016. Theoretical investigation of structural, electronic and magnetic properties for PtnNi55-n (n=0–55) nanoparticles. Comput. Mater. Sci., 117, 15–23. https://doi.org/10.1016/j.commatsci.2016.01.016
  • Referans39 Wilson, N. T., Johnston, R. L., 2002. A theoretical study of atom ordering in copper–gold nanoalloy clusters. J. Mater. Chem., 12, 2913–2922. https://doi.org/10.1039/B204069G
  • Referans40 Wu, G., Liu, Q., Wu, X., 2015. Geometrical and energetic properties in 38-atom trimetallic Au–Pd–Pt clusters. Chem. Phys. Lett., 620, 92-97. https://doi.org/10.1016/j.cplett.2014.12.022
  • Referans41 Wu, G., Sun, Y., Wu, X., Chen, R., Wang, Y., 2017. Large scale structural optimization of trimetallic Cu–Au–Pt clusters up to 147 atoms. Chem. Phys. Lett., 686, 103-110. https://doi.org/10.1016/j.cplett.2017.08.049
  • Referans42 Wu, D., Zhang, W., Lin, A., Cheng, D., 2020. Low Pt-content ternary PtNiCu nanoparticles with hollow interiors and accessible surfaces as enhanced multifunctional electrocatalysts. ACS Appl. Mater. Interfaces, 12, 8, 9600–9608. https://doi.org/10.1021/acsami.9b20076
  • Referans43 Xia, Z., Li, C. M., Dai, L., 2019. Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability. Matter, 1, 1445–1455. https://doi.org/10.1016/j.matt.2019.11.009
  • Referans44 Yang, Y., Zhao, Z., Zhu, J., Cheng, D., 2020. Effect of Size and Composition on the Structural Stability of Pt–Ni Nanoalloys. J. Clust. Sci., 31, 609–614. https://doi.org/10.1007/s10876-019-01502-1
  • Referans45 Yıldırım, H., Arslan, H., 2019. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. BAUN Fen Bil. Enst. Dergisi, 21(1), 336-351. https://doi.org/10.25092/baunfbed.547194
  • Referans46 Yıldırım, H., Arslan, H., 2020. Size and composition effect on structural properties and melting behaviors of Cu–Ag–Au ternary nanoalloys. Int. J. Mod. Phys. C, 31:(06), 2050078. https://doi.org/10.1142/S0129183120500783
  • Referans47 Yousaf, A. B., Alsaydeh, S. A. M., Zavahir, F. S., Kasak, P., Zaidi, J., 2018. Ultra-low Pt-decorated NiCu bimetallic alloys nanoparticles supported on reduced graphene oxide for electro-oxidation of methanol. MRS Communications, 8(03):1-8. https://doi.org/10.1557/mrc.2018.140
  • Referans48 Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., Wang, X., Wang, H., Wang, M., Su, H., Li, D., Li, X., Qin, Y., 2015. One-Pot Synthesis of Ternary Pt−Ni−Cu Nanocrystals with High Catalytic Performance. Chem. Mater., 27(18), 6402-6410. https://doi.org/10.1021/acs.chemmater.5b02575
  • Referans49 Zhang, P., Hu, Y., Li, B., Zhang, Q., Zhou, C., Yu, H., Zhang, X., Chen, L., Eichhorn, B., Zhou, S., 2015. Kinetically Stabilized Pd@Pt Core−Shell Octahedral Nanoparticles with Thin Pt Layers for Enhanced Catalytic Hydrogenation Performance. ACS Catal., 5 (2), 1335–1343. https://doi.org/10.1021/cs501612g
  • Referans50 Zhang, H., Wang, H., Cao, J., Ni, Y., 2017. Hierarchical Cu-Ni-Pt dendrites: Two-step electrodeposition and highly catalytic performances. J. Alloys Compd., 698, 654-661. https://doi.org/10.1016/j.jallcom.2016.12.212
  • Referans51 Zheng, J., 2017. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts. Appl. Surf. Sci., 413, 360-365. https://doi.org/10.1016/j.apsusc.2017.03.285
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Article
Yazarlar

Hüseyin Yıldırım 0000-0002-8554-3885

Haydar Arslan 0000-0002-6624-9314

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Yıldırım, H., & Arslan, H. (2021). 38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri. Karaelmas Fen Ve Mühendislik Dergisi, 11(2), 114-122. https://doi.org/10.7212/karaelmasfen.830084
AMA Yıldırım H, Arslan H. 38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2021;11(2):114-122. doi:10.7212/karaelmasfen.830084
Chicago Yıldırım, Hüseyin, ve Haydar Arslan. “38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal Ve Dinamik Özellikleri”. Karaelmas Fen Ve Mühendislik Dergisi 11, sy. 2 (Aralık 2021): 114-22. https://doi.org/10.7212/karaelmasfen.830084.
EndNote Yıldırım H, Arslan H (01 Aralık 2021) 38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri. Karaelmas Fen ve Mühendislik Dergisi 11 2 114–122.
IEEE H. Yıldırım ve H. Arslan, “38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri”, Karaelmas Fen ve Mühendislik Dergisi, c. 11, sy. 2, ss. 114–122, 2021, doi: 10.7212/karaelmasfen.830084.
ISNAD Yıldırım, Hüseyin - Arslan, Haydar. “38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal Ve Dinamik Özellikleri”. Karaelmas Fen ve Mühendislik Dergisi 11/2 (Aralık 2021), 114-122. https://doi.org/10.7212/karaelmasfen.830084.
JAMA Yıldırım H, Arslan H. 38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri. Karaelmas Fen ve Mühendislik Dergisi. 2021;11:114–122.
MLA Yıldırım, Hüseyin ve Haydar Arslan. “38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal Ve Dinamik Özellikleri”. Karaelmas Fen Ve Mühendislik Dergisi, c. 11, sy. 2, 2021, ss. 114-22, doi:10.7212/karaelmasfen.830084.
Vancouver Yıldırım H, Arslan H. 38 Atomlu Ni-Pt-Cu Üçlü Nanoalaşımlarının Yapısal ve Dinamik Özellikleri. Karaelmas Fen ve Mühendislik Dergisi. 2021;11(2):114-22.