Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamic Modelling and Experimental Validation of New Generation High Power IGBTs

Yıl 2022, Cilt: 12 Sayı: 1, 75 - 85, 01.06.2022

Öz

In this paper, IGBT dynamic model is characterized by the circuit simulation tool. IGBT datasheet is used for the details need to
built dynamic model. After that, the model is used in the double pulse test circuit simulation. And the results compared with the real
test results. Main idea of this research is to have an IGBT dynamic model as close as possible to real one in order to use the model in
the gate drive design simulations. A software tool of Ansys Simplorer is used for the simulations and the IGBT that is used for the
research is MBM450FS33F. This is the new packaging generation high voltage dual IGBT that has the feature of high power density,
low inductance and easy paralleling for the converter applications. Experimental test measurements are also performed with double
pulse test setup. The comparison of the simulation and the experiment results for both voltage and current waveforms, especially peak
values and the turn off and turn on energy losses are given in detail. The results are shown that the dynamic IGBT model that is built
can be used for the system simulations. It achieves an acceptable accuracy considering the compared results

Kaynakça

  • Azar, R., Udrea F., De Silva, M., Amaratunga, G. ve Dawson, F. 2002. Advanced SPICE Modelling of Large Power IGBT Modules, IEEE Trans. On Ind. App. Con. 37th, 40(3), doi: 10.1109/IAS.2002.1042786
  • Bryant. A., Lu, L., Santi, E., Hudgins, J. L. ve Palmer, P, R. 2008. Modeling of IGBT Resistive and Inductive Turn-On Behavior, IEEE Trans. On Ind. App. 44(3), 904-914. doi: 10.1109/TIA.2008.921384
  • Duan, Y., Xiao, F., Luo, Y. ve Iannuzzo, F. 2019. A Lumped-Charge Approach Based Physical SPICE-Model for High Power Soft-Punch Through IGBT. IEEE Journal of Emer. and Selec. Topics in Power Elec. 7(1), 62-70. doi: 10.1109/JESTPE.2018.2874105
  • Haddi, A., Maquad, A., Elmazria, O. ve Hoffmann, A. 1998. A Simplified Spice Model For IGBT, Active and Passive Elec. Comp., 21(3), 279-292, doi.org/10.1155/1998/89240
  • Hefner, A. R. Jr. ve Diebolt, D. M. 1994. An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator, IEEE Trans. On Power Elec. 9(5), 532 – 542, doi:10.1109/63.321038
  • Hefner, A. R. Jr. 1995. Modeling Buffer Layer IGBTs for Circuit Simulation, IEEE Trans. On Power Elec. 10(2), 111 – 123, doi:10.1109/63.372596
  • Ji, S., Lu, T., Zhao, Z., Fujihira, T. ve Igarashi, S. 2015. Physical Model with Parameter Extraction Method for Fuji Electric 1.7kV IGBT. 18th Int. Conf. on Elec. Machines and Syst. (ICEMS). doi: 10.1109/ICEMS.2015.7385103
  • Li, X., Luo, Y., Duan, Y., Liu, B., Huang, Y. Ve Sun, F. 2018. Stray Inductance Extraction of High-Power IGBT Dynamic Test Platform and Verification of Physical Model. IEEE Int. Power Elec. and App. Conf. and Exp. (PEAC). doi: 10.1109/PEAC.2018.8590475
  • Ma, T., Jia, Y. ve Luo, Y. 2020. Physical Model of FS-IGBT Considering Dynamic Avalanche Electrical Characteristics and Analysis of Chip Non-uniform Stress, IEEE Int. Conf. on Inf. Tech. Big Data and Artif. Intel. (ICIBA), doi: 10.1109/ICIBA50161.2020.9277207
  • Meng, J., Ning, P., Wen, X. ve Li, L. 2017. A finite difference method modeling for IGBT and diode in PSPICE. Chinese Journal of Elec. Eng.. 3(3), 85-93. doi: 10.23919/CJEE.2017.8250428
  • Musikka, T., Popova, L., Juntunen, R., Lohtander, M., Silventoinen, P., Pyrhönen, O., Pyrhönen, J. ve Maula, K. 2013. Improvement of IGBT Model Characterization with Experimental Tests, 15th European Conf. on Power Elec. and App. (EPE). doi: 10.1109/EPE.2013.6631841
  • Nawaz, M., Chimento, F., Mora, N. ve Zammoni, M. 2013. Simple Spice Based Modeling Platform for 4.5 kV Power IGBT Modules, IEEE Energy Conv. Cong. and Exp. doi:10.1109/ECCE.2013.6646712
  • Nicolai, U. 2014. AN 1403: Determining switching losses of SEMIKRON IGBT modules, Revision 00, Semikron
  • Oustad, D., Lefebre, S., Petit, M., Lhotellier, D. ve Amezianne, M. 2016. Comparison of modeling switching losses of an IGBT based on the datasheet and an experimentation, 18th European Conf. on Power Elec. and App. (EPE'16 ECCE Europe). doi: 10.1109/EPE.2016.7695494
  • Sfakianis, G., Nawaz, M. ve Chimento, F. 2014. A Temperature Dependent Simple Spice Based Modeling Platform for Power IGBT Modules, Energy Conv. Cong.s and Exp. (ECCE), IEEE. doi: 10.1109/ECCE.2014.6953788
  • Sheng, K., Williams, B. W. ve Finney, S. J. 2000. A Review of IGBT Models, IEEE Trans. on Power Elec., 15(6), 1250 – 1266, doi: 10.1109/63.892840.
  • Song, P., Zang, L., Zou, L., Zhao, T. ve Sun, Y. 2020. An Improved Transient Model of High Voltage IGBT Based on Vector Fitting. IEEE Int. Conf.e on High Voltage Eng. and App. (ICHVE), doi: 10.1109/ICHVE49031.2020.9279756
  • Volke, A. ve Hornmkamp, M. 2015. Infineon, Second Edition, IGBT Modules, Technologies, Driver and Application, 534 pp.
  • Xue, P., Fu, G. Ve Zhang, D. 2017. Modeling Inductive Switching Characteristics of High-Speed Buffer Layer IGBT. IEEE Trans. on Power Elec., 32(4), 3075 – 3087. doi: 10.1109/TPEL.2016.2570838
  • CWT Technical Notes. 2011. Power Electronic Measurements Ltd. https://gmw.com/wp-content/uploads/2019/06/CWT-Technical-notes-HF-and-Rise-time-01A.pdf
  • IEC 60747-9. 2007 Semiconductor devices - Discrete devices - Part 9: Insulated-gate bipolar transistors (IGBTs) MBM450FS33F IGBT Module datasheet. 2017. Hitachi Semiconductor, https://www.hitachi-power-semiconductor-device.co.jp/products/igbt/pdf/IGBT-SP-14035R5_MBM450FS33F_web.pdf
  • Application Note. 2015. Measuring Method of Stray Inductance for Inverter Circuit. Hitachi Semiconductor, https://www.hitachi-power-semiconductor device.co.jp/en/products/igbt/pdf/ stray_inductance.pdf

Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama

Yıl 2022, Cilt: 12 Sayı: 1, 75 - 85, 01.06.2022

Öz

Bu çalışmada, karakterize edilmiş IGBT dinamik modelleme yapılmıştır. Bu dinamik modelleme için IGBT bilgi dokümanı
kullanılmıştır. Kurulan model IGBT çift darbe test devresinde denenmiştir. Sonuçlar deneysel çalışmalarla karşılaştırılmıştır. Bu
çalışmanın temel amacı yüksek güçlü çeviricilerle yapılan benzetim çalışmalarında sonuçların özellikle iletim ve kesime geçiş anlarında
gerçeğe yakın olmasını sağlamaktır. Yine IGBT kapı sürme devresi tasarım aşamasında da model, algoritmanın benzetim ortamında
geliştirilmesi esnasında fayda sağlayacaktır. Benzetimlerde ANSYS Simplorer programı kullanılmıştır. Modelleme için yeni nesil
yüksek güçlü IGBT modülü olan MBM450FS33F model Hitachi marka IGBT seçilmiştir. Bu ürün yeni paket çift IGBT’li modül
olup yüksek güç yoğunluğu, düşük endüktans ve kolay paralellenebilir özellikleriyle yüksek güçlü çeviricilerde tercih edilmektedir.
Deneysel sonuçlar kurulan çift darbe test düzeneği üzerinden alınmıştır. Benzetim ve deneysel çalışmalar arasındaki farklar grafik ve
çizelgelerle verilmiş, program üzerinde yapılan IGBT modelin gerçek modül ile yakınlığı anahtarlama enerjisi hesaplamaları ile de
kontrol edilmiştir. Sonuçlar kurulan modelin gerçeğe yakın olduğunu, bu modelin kullanıldığı sistem benzetimlerinde uygulanabilir
olduğunu göstermiştir.

Kaynakça

  • Azar, R., Udrea F., De Silva, M., Amaratunga, G. ve Dawson, F. 2002. Advanced SPICE Modelling of Large Power IGBT Modules, IEEE Trans. On Ind. App. Con. 37th, 40(3), doi: 10.1109/IAS.2002.1042786
  • Bryant. A., Lu, L., Santi, E., Hudgins, J. L. ve Palmer, P, R. 2008. Modeling of IGBT Resistive and Inductive Turn-On Behavior, IEEE Trans. On Ind. App. 44(3), 904-914. doi: 10.1109/TIA.2008.921384
  • Duan, Y., Xiao, F., Luo, Y. ve Iannuzzo, F. 2019. A Lumped-Charge Approach Based Physical SPICE-Model for High Power Soft-Punch Through IGBT. IEEE Journal of Emer. and Selec. Topics in Power Elec. 7(1), 62-70. doi: 10.1109/JESTPE.2018.2874105
  • Haddi, A., Maquad, A., Elmazria, O. ve Hoffmann, A. 1998. A Simplified Spice Model For IGBT, Active and Passive Elec. Comp., 21(3), 279-292, doi.org/10.1155/1998/89240
  • Hefner, A. R. Jr. ve Diebolt, D. M. 1994. An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator, IEEE Trans. On Power Elec. 9(5), 532 – 542, doi:10.1109/63.321038
  • Hefner, A. R. Jr. 1995. Modeling Buffer Layer IGBTs for Circuit Simulation, IEEE Trans. On Power Elec. 10(2), 111 – 123, doi:10.1109/63.372596
  • Ji, S., Lu, T., Zhao, Z., Fujihira, T. ve Igarashi, S. 2015. Physical Model with Parameter Extraction Method for Fuji Electric 1.7kV IGBT. 18th Int. Conf. on Elec. Machines and Syst. (ICEMS). doi: 10.1109/ICEMS.2015.7385103
  • Li, X., Luo, Y., Duan, Y., Liu, B., Huang, Y. Ve Sun, F. 2018. Stray Inductance Extraction of High-Power IGBT Dynamic Test Platform and Verification of Physical Model. IEEE Int. Power Elec. and App. Conf. and Exp. (PEAC). doi: 10.1109/PEAC.2018.8590475
  • Ma, T., Jia, Y. ve Luo, Y. 2020. Physical Model of FS-IGBT Considering Dynamic Avalanche Electrical Characteristics and Analysis of Chip Non-uniform Stress, IEEE Int. Conf. on Inf. Tech. Big Data and Artif. Intel. (ICIBA), doi: 10.1109/ICIBA50161.2020.9277207
  • Meng, J., Ning, P., Wen, X. ve Li, L. 2017. A finite difference method modeling for IGBT and diode in PSPICE. Chinese Journal of Elec. Eng.. 3(3), 85-93. doi: 10.23919/CJEE.2017.8250428
  • Musikka, T., Popova, L., Juntunen, R., Lohtander, M., Silventoinen, P., Pyrhönen, O., Pyrhönen, J. ve Maula, K. 2013. Improvement of IGBT Model Characterization with Experimental Tests, 15th European Conf. on Power Elec. and App. (EPE). doi: 10.1109/EPE.2013.6631841
  • Nawaz, M., Chimento, F., Mora, N. ve Zammoni, M. 2013. Simple Spice Based Modeling Platform for 4.5 kV Power IGBT Modules, IEEE Energy Conv. Cong. and Exp. doi:10.1109/ECCE.2013.6646712
  • Nicolai, U. 2014. AN 1403: Determining switching losses of SEMIKRON IGBT modules, Revision 00, Semikron
  • Oustad, D., Lefebre, S., Petit, M., Lhotellier, D. ve Amezianne, M. 2016. Comparison of modeling switching losses of an IGBT based on the datasheet and an experimentation, 18th European Conf. on Power Elec. and App. (EPE'16 ECCE Europe). doi: 10.1109/EPE.2016.7695494
  • Sfakianis, G., Nawaz, M. ve Chimento, F. 2014. A Temperature Dependent Simple Spice Based Modeling Platform for Power IGBT Modules, Energy Conv. Cong.s and Exp. (ECCE), IEEE. doi: 10.1109/ECCE.2014.6953788
  • Sheng, K., Williams, B. W. ve Finney, S. J. 2000. A Review of IGBT Models, IEEE Trans. on Power Elec., 15(6), 1250 – 1266, doi: 10.1109/63.892840.
  • Song, P., Zang, L., Zou, L., Zhao, T. ve Sun, Y. 2020. An Improved Transient Model of High Voltage IGBT Based on Vector Fitting. IEEE Int. Conf.e on High Voltage Eng. and App. (ICHVE), doi: 10.1109/ICHVE49031.2020.9279756
  • Volke, A. ve Hornmkamp, M. 2015. Infineon, Second Edition, IGBT Modules, Technologies, Driver and Application, 534 pp.
  • Xue, P., Fu, G. Ve Zhang, D. 2017. Modeling Inductive Switching Characteristics of High-Speed Buffer Layer IGBT. IEEE Trans. on Power Elec., 32(4), 3075 – 3087. doi: 10.1109/TPEL.2016.2570838
  • CWT Technical Notes. 2011. Power Electronic Measurements Ltd. https://gmw.com/wp-content/uploads/2019/06/CWT-Technical-notes-HF-and-Rise-time-01A.pdf
  • IEC 60747-9. 2007 Semiconductor devices - Discrete devices - Part 9: Insulated-gate bipolar transistors (IGBTs) MBM450FS33F IGBT Module datasheet. 2017. Hitachi Semiconductor, https://www.hitachi-power-semiconductor-device.co.jp/products/igbt/pdf/IGBT-SP-14035R5_MBM450FS33F_web.pdf
  • Application Note. 2015. Measuring Method of Stray Inductance for Inverter Circuit. Hitachi Semiconductor, https://www.hitachi-power-semiconductor device.co.jp/en/products/igbt/pdf/ stray_inductance.pdf
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Osman Tanrıverdi 0000-0002-7234-0456

Deniz Yıldırım 0000-0001-6216-6290

Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

APA Tanrıverdi, O., & Yıldırım, D. (2022). Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama. Karaelmas Fen Ve Mühendislik Dergisi, 12(1), 75-85. https://doi.org/10.7212/karaelmasfen.1002022
AMA Tanrıverdi O, Yıldırım D. Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2022;12(1):75-85. doi:10.7212/karaelmasfen.1002022
Chicago Tanrıverdi, Osman, ve Deniz Yıldırım. “Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme Ve Deneysel Doğrulama”. Karaelmas Fen Ve Mühendislik Dergisi 12, sy. 1 (Haziran 2022): 75-85. https://doi.org/10.7212/karaelmasfen.1002022.
EndNote Tanrıverdi O, Yıldırım D (01 Haziran 2022) Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama. Karaelmas Fen ve Mühendislik Dergisi 12 1 75–85.
IEEE O. Tanrıverdi ve D. Yıldırım, “Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama”, Karaelmas Fen ve Mühendislik Dergisi, c. 12, sy. 1, ss. 75–85, 2022, doi: 10.7212/karaelmasfen.1002022.
ISNAD Tanrıverdi, Osman - Yıldırım, Deniz. “Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme Ve Deneysel Doğrulama”. Karaelmas Fen ve Mühendislik Dergisi 12/1 (Haziran 2022), 75-85. https://doi.org/10.7212/karaelmasfen.1002022.
JAMA Tanrıverdi O, Yıldırım D. Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:75–85.
MLA Tanrıverdi, Osman ve Deniz Yıldırım. “Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme Ve Deneysel Doğrulama”. Karaelmas Fen Ve Mühendislik Dergisi, c. 12, sy. 1, 2022, ss. 75-85, doi:10.7212/karaelmasfen.1002022.
Vancouver Tanrıverdi O, Yıldırım D. Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(1):75-8.