Research Article
BibTex RIS Cite

The Investigation of the Relationship Between Geometrical Growth and Melting Behavior of NiN (N=6-55) Clusters

Year 2022, Volume: 12 Issue: 1, 15 - 21, 01.06.2022

Abstract

The melting behavior of NiN (N=6-55) clusters was studied, as well as the growing behavior of geometric shapes with the lowest
energy acquired when each atom was added. This was accomplished using the microcanonical Molecular Dynamics (MD) simulation
approach, which employs the Sutton-Chen potential in interparticle interactions. The heat capacity curves were calculated using the
multiple histogram method with the caloric curves from MD simulation and the square root of the mean squared (δrms) of the bondlength
fluctuations. How do the heat capacity curves which calculated using the multiple histogram method behave when the atomic
number increases and the relations of the clusters with the most stable geometries were determined. The maximums of heat capacity
curves corresponding of δ(rms) phase transition region and the graph of change by atomic number for the energy difference between
global minumum and first isomers have been investigated and N=13, 19, 38, 48, 50, 55 clusters were found to be the most stable sizes

References

  • Aguado, A.,Jarrold, M.F. 2011. Melting and Freezing of Metal Clusters. Annu. Rev. Phys. Chem., 62: 151-72. https://doi.org/10.1146/annurev-physchem-032210-103454.
  • Calvo, F., Labastie, P. 1995. Configurational density of states from molecular dynamics simulations. Chem. Phys. Lett., 247: 395-400. https://doi.org/10.1016/S0009-2614(95)01226-5.
  • Cezar, H.M., Rondina, G.G., Silva, J.L.F. 2019. Thermodynamic properties of 55-atom Pt-based nanoalloys: Phase changes and structural effects on the electronic properties J. Chem. Phys., 151: 204301. https://doi.org/10.1063/1.5125689.
  • Doye, J.P.K., Meyer, L. 2005. Mapping the magic numbers in binary Lennard-Jones clusters. Phys Rev Lett. 95(6): 063401. https://doi.org/10.1103/physrevlett.95.063401.
  • Doye, J.P.K., Wales, D.J., 1998. Global minima for transition metal clusters described by Sutton-Chen potentials. New J. Chem., 22: 733-744. https://doi.org/10.1039/A709249K.
  • Eryürek, M. 2005. Simülasyon Yöntemleriyle Kümelerin Termodinamik Niceliklerinin Belirlenmesi. Doktora Tezi, Zonguldak Karaelmas Üniversitesi, 20s. https://tez.yok.gov.tr/UlusalTezMerkezi/tarama.jsp, tez no: 168576.
  • Eryürek, M., Güven, MH. 2008. Peculiar thermodynamic properties of LJ N (N = 39-55) clusters. Eur. Phys. J. D, 48 (2): 221-228. https://dx.doi.org/10.1140/epjd/e2008-00094-2.
  • Frantz, DD., 2001. Magic number behavior for heat capacities of medium-sized classical Lennard-Jones clusters. J. Chem. Phys., 115: 6136. https://doi.org/10.1063/1.1397329.
  • Guvenc, Z.B., Jellinek, J., Voter, A.F. 1991. Phase changes in nickel clusters from an embedded-atom potential. Int. Symp. on the Phys. and Chem. of finite sys.: from clusters to crystals, Richmond, VA (United States). https://doi.org/10.1021/jp962720r.
  • Güvenç, Z.B., Güvenç, D., Jellinek, J. 1999. Structural Forms and Energies of NiN, N=12-14, Clusters. Math. Com. App., 4(1): 75-81. https://doi.org/10.3390/mca4010075.
  • Haberland, H. 2000. Melting of Clusters. Springer, Les Houches, Session LXXIII pp. 3-26.
  • Hamming, R.W. 1959. Predictor-Corrector Methods for Ordinary Differential Equations. J. ACM, 6 (1): 37-47. https://doi.org/10.1145/320954.320958.
  • Hewage1, J.W., Rupika, W.L., Amar, F.G. 2012. Structure, dynamic and energetic of mixed transition metal clusters: A computational study of mixed clusters of silver and nickel. Eur. Phys. J. D, 66: 282. https://doi.org/10.1140/epjd/e2012-20691-6.
  • Kaatz, F. H., Bultheel, A. 2018. Size, shape, and compositional effects on the order-disorder phase transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys. Nanotechnology 29: 345701. https://doi.org/10.1088/1361-6528/aac6b4.
  • Kirkpatrick, S., Gelatt, C. D., Vecchi, Jr., M. P. 1983. Optimization by Simulated Annealing. Science, 220 (4598): 671-680. http://dx.doi.org/10.1126/science.220.4598.671.
  • Labastie, P., Whetten, RL. 1990. Statistical Thermodynamics of the Cluster Solid-Liquid Transition. Phys. Rev. Lett. 65: 1567-1570. https://doi.org/10.1103/physrevlett.65.1567.
  • Li, T.T., He, C., Zhang, W.X., Cheng, M. 2018. Structural and melting properties of Cu-Ni clusters: A simulation study. J. All. Com. 752:76-84. https://doi.org/10.1016/j.jallcom.2018.04.145.
  • Lloyd, L.D., Johnston, R.L. 1998. Modelling aluminium clusters with an empirical many-body potential. Chem. Phys.,15:107-121. https://doi.org/10.1016/S0301-0104(98)00180-3.
  • Lu, S., Zhang, J., Duan, H. 2009. Melting behaviors of CoN (N = 13, 14, 38, 55, 56) clusters. Chem. Phys,. 363: 7-12. https://doi.org/10.1016/j.chemphys.2009.06.010.
  • Lyalin, A., Hussien, A., Solov'yov, A.V., Greiner, W. 2009. Impurity effect on the melting of nickel clusters as seen via molecular dynamics simulations. Phys. Rev. B, 79: 165403. https://doi.org/10.1103/PhysRevB.79.165403.
  • Nayak, Saroj K., Khanna, S. N., Rao, B. K., Jena, P. 1997. Physics of Nickel Clusters:? Energetics and Equilibrium Geometries. Phys. Chem. A, 101 (6): 1072-1080. https://doi.org/10.1021/jp962720r.
  • Noya, E.G., Doye, J.P.K., Wales, D.J., Aguado, A. 2007. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour. Eur. Phys. J. D 43(1):57-60. https://doi.org/10.1140/epjd%2Fe2007-00092-x.
  • Oderji, H.Y., Ding, H. 2011. Determination of melting mechanism of Pd24Pt14 nanoalloy by multiple histogram method via molecular dynamics simulations. Chem. Phys., 388: 23-30. https://doi.org/10.1016/j.chemphys.2011.07.011.
  • Teng, Y., Zeng, X., Zhang, H., Sun, D. 2007. Melting and Glass Transition for Ni Clusters. J. Phys. Chem. B, 111 (9): 2309-2312. https://doi.org/10.1021/jp070061k.
  • Wei, C., Zhao, Z., Fisher, A.,Zhu, J., Cheng, D. 2016. Theoretical Study on the Structures and Thermal Properties of Ag-Pt-Ni Trimetallic Clusters. J. Clust. Sci., 27:1849-1861. https://link.springer.com/article/10.1007/s10876-016-1068-x.
  • Wu, X., Chen, S., Sun, S., Chen, Y. 2012. Geometrical structures of gold clusters on Gupta and Sutton-Chen potentials. Com. Theor. Chem., 1002 (15): 43-48 https://doi.org/10.1016/j.comptc.2012.10.001.
  • Yıldırım, E.K., Atiş, M., Güvenç, Z.B. 2005. Structure and dynamical properties of AuN, N=12-14 clusters: Molecular dynamics simulation. Int. J. Mod. Phys. C, 16(01): 99-116. https://doi.org/10.1142/S0129183105006966.

NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi

Year 2022, Volume: 12 Issue: 1, 15 - 21, 01.06.2022

Abstract

NiN (N=6-55) kümelerinin her bir atom eklendiğinde elde edilen minimum enerjili geometrik yapılarının büyüme davranışı ile birlikte
erime davranışı incelenmiştir. Bunun için parçacıklar arası etkileşmelerde Sutton-Chen potansiyelinin kullanıldığı mikrokanonik
Moleküler Dinamik (MD) simülasyon yönteminden faydalanılmıştır. MD simülasyonundan elde edilen bağ uzunluğundaki
dalgalanmaların kare ortalamasının karekökü δ(rms) ile çoklu histogram yöntemi kullanılarak hesaplanan ısı kapasitesi eğrilerinin,
atom sayısı arttığında nasıl bir davranış gösterdikleri ve kümelerin en kararlı geometrileri ile olan ilişkileri belirlenmiştir. δ(rms) lerin faz
geçiş bölgesine karşılık gelen, ısı kapasitesi eğrilerinin maksimumları ve global minimumları ile birinci izomerlerinin enerji farklarının
atom sayısına bağlı değişim grafikleri incelenmiş ve N=13, 19, 38, 48, 50, 55 kümelerinin en kararlı yapıda olduğu bulunmuştur.

References

  • Aguado, A.,Jarrold, M.F. 2011. Melting and Freezing of Metal Clusters. Annu. Rev. Phys. Chem., 62: 151-72. https://doi.org/10.1146/annurev-physchem-032210-103454.
  • Calvo, F., Labastie, P. 1995. Configurational density of states from molecular dynamics simulations. Chem. Phys. Lett., 247: 395-400. https://doi.org/10.1016/S0009-2614(95)01226-5.
  • Cezar, H.M., Rondina, G.G., Silva, J.L.F. 2019. Thermodynamic properties of 55-atom Pt-based nanoalloys: Phase changes and structural effects on the electronic properties J. Chem. Phys., 151: 204301. https://doi.org/10.1063/1.5125689.
  • Doye, J.P.K., Meyer, L. 2005. Mapping the magic numbers in binary Lennard-Jones clusters. Phys Rev Lett. 95(6): 063401. https://doi.org/10.1103/physrevlett.95.063401.
  • Doye, J.P.K., Wales, D.J., 1998. Global minima for transition metal clusters described by Sutton-Chen potentials. New J. Chem., 22: 733-744. https://doi.org/10.1039/A709249K.
  • Eryürek, M. 2005. Simülasyon Yöntemleriyle Kümelerin Termodinamik Niceliklerinin Belirlenmesi. Doktora Tezi, Zonguldak Karaelmas Üniversitesi, 20s. https://tez.yok.gov.tr/UlusalTezMerkezi/tarama.jsp, tez no: 168576.
  • Eryürek, M., Güven, MH. 2008. Peculiar thermodynamic properties of LJ N (N = 39-55) clusters. Eur. Phys. J. D, 48 (2): 221-228. https://dx.doi.org/10.1140/epjd/e2008-00094-2.
  • Frantz, DD., 2001. Magic number behavior for heat capacities of medium-sized classical Lennard-Jones clusters. J. Chem. Phys., 115: 6136. https://doi.org/10.1063/1.1397329.
  • Guvenc, Z.B., Jellinek, J., Voter, A.F. 1991. Phase changes in nickel clusters from an embedded-atom potential. Int. Symp. on the Phys. and Chem. of finite sys.: from clusters to crystals, Richmond, VA (United States). https://doi.org/10.1021/jp962720r.
  • Güvenç, Z.B., Güvenç, D., Jellinek, J. 1999. Structural Forms and Energies of NiN, N=12-14, Clusters. Math. Com. App., 4(1): 75-81. https://doi.org/10.3390/mca4010075.
  • Haberland, H. 2000. Melting of Clusters. Springer, Les Houches, Session LXXIII pp. 3-26.
  • Hamming, R.W. 1959. Predictor-Corrector Methods for Ordinary Differential Equations. J. ACM, 6 (1): 37-47. https://doi.org/10.1145/320954.320958.
  • Hewage1, J.W., Rupika, W.L., Amar, F.G. 2012. Structure, dynamic and energetic of mixed transition metal clusters: A computational study of mixed clusters of silver and nickel. Eur. Phys. J. D, 66: 282. https://doi.org/10.1140/epjd/e2012-20691-6.
  • Kaatz, F. H., Bultheel, A. 2018. Size, shape, and compositional effects on the order-disorder phase transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys. Nanotechnology 29: 345701. https://doi.org/10.1088/1361-6528/aac6b4.
  • Kirkpatrick, S., Gelatt, C. D., Vecchi, Jr., M. P. 1983. Optimization by Simulated Annealing. Science, 220 (4598): 671-680. http://dx.doi.org/10.1126/science.220.4598.671.
  • Labastie, P., Whetten, RL. 1990. Statistical Thermodynamics of the Cluster Solid-Liquid Transition. Phys. Rev. Lett. 65: 1567-1570. https://doi.org/10.1103/physrevlett.65.1567.
  • Li, T.T., He, C., Zhang, W.X., Cheng, M. 2018. Structural and melting properties of Cu-Ni clusters: A simulation study. J. All. Com. 752:76-84. https://doi.org/10.1016/j.jallcom.2018.04.145.
  • Lloyd, L.D., Johnston, R.L. 1998. Modelling aluminium clusters with an empirical many-body potential. Chem. Phys.,15:107-121. https://doi.org/10.1016/S0301-0104(98)00180-3.
  • Lu, S., Zhang, J., Duan, H. 2009. Melting behaviors of CoN (N = 13, 14, 38, 55, 56) clusters. Chem. Phys,. 363: 7-12. https://doi.org/10.1016/j.chemphys.2009.06.010.
  • Lyalin, A., Hussien, A., Solov'yov, A.V., Greiner, W. 2009. Impurity effect on the melting of nickel clusters as seen via molecular dynamics simulations. Phys. Rev. B, 79: 165403. https://doi.org/10.1103/PhysRevB.79.165403.
  • Nayak, Saroj K., Khanna, S. N., Rao, B. K., Jena, P. 1997. Physics of Nickel Clusters:? Energetics and Equilibrium Geometries. Phys. Chem. A, 101 (6): 1072-1080. https://doi.org/10.1021/jp962720r.
  • Noya, E.G., Doye, J.P.K., Wales, D.J., Aguado, A. 2007. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour. Eur. Phys. J. D 43(1):57-60. https://doi.org/10.1140/epjd%2Fe2007-00092-x.
  • Oderji, H.Y., Ding, H. 2011. Determination of melting mechanism of Pd24Pt14 nanoalloy by multiple histogram method via molecular dynamics simulations. Chem. Phys., 388: 23-30. https://doi.org/10.1016/j.chemphys.2011.07.011.
  • Teng, Y., Zeng, X., Zhang, H., Sun, D. 2007. Melting and Glass Transition for Ni Clusters. J. Phys. Chem. B, 111 (9): 2309-2312. https://doi.org/10.1021/jp070061k.
  • Wei, C., Zhao, Z., Fisher, A.,Zhu, J., Cheng, D. 2016. Theoretical Study on the Structures and Thermal Properties of Ag-Pt-Ni Trimetallic Clusters. J. Clust. Sci., 27:1849-1861. https://link.springer.com/article/10.1007/s10876-016-1068-x.
  • Wu, X., Chen, S., Sun, S., Chen, Y. 2012. Geometrical structures of gold clusters on Gupta and Sutton-Chen potentials. Com. Theor. Chem., 1002 (15): 43-48 https://doi.org/10.1016/j.comptc.2012.10.001.
  • Yıldırım, E.K., Atiş, M., Güvenç, Z.B. 2005. Structure and dynamical properties of AuN, N=12-14 clusters: Molecular dynamics simulation. Int. J. Mod. Phys. C, 16(01): 99-116. https://doi.org/10.1142/S0129183105006966.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Meral Eryürek 0000-0001-7826-3829

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Eryürek, M. (2022). NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi. Karaelmas Fen Ve Mühendislik Dergisi, 12(1), 15-21. https://doi.org/10.7212/karaelmasfen.950373
AMA Eryürek M. NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. June 2022;12(1):15-21. doi:10.7212/karaelmasfen.950373
Chicago Eryürek, Meral. “NiN (N=6-55) Kümelerinin Geometrik Büyümesi Ile Erime Davranışı İlişkisinin İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi 12, no. 1 (June 2022): 15-21. https://doi.org/10.7212/karaelmasfen.950373.
EndNote Eryürek M (June 1, 2022) NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi 12 1 15–21.
IEEE M. Eryürek, “NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 12, no. 1, pp. 15–21, 2022, doi: 10.7212/karaelmasfen.950373.
ISNAD Eryürek, Meral. “NiN (N=6-55) Kümelerinin Geometrik Büyümesi Ile Erime Davranışı İlişkisinin İncelenmesi”. Karaelmas Fen ve Mühendislik Dergisi 12/1 (June 2022), 15-21. https://doi.org/10.7212/karaelmasfen.950373.
JAMA Eryürek M. NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:15–21.
MLA Eryürek, Meral. “NiN (N=6-55) Kümelerinin Geometrik Büyümesi Ile Erime Davranışı İlişkisinin İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 12, no. 1, 2022, pp. 15-21, doi:10.7212/karaelmasfen.950373.
Vancouver Eryürek M. NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(1):15-21.