Research Article
BibTex RIS Cite

Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes

Year 2022, Volume: 12 Issue: 2, 146 - 154, 24.12.2022

Abstract

In this study, ultrafiltration (UF) technique was used for natural organic matter (NOM) characterization in water samples taken from Ulutan drinking water treatment plant (UWTP) units (raw water, coagulation and disinfection process) in Zonguldak. The distribution of NOM fractioation was performed the carbon mass balance of the UF processes according to the Total organic carbon (TOC) measurements. The NOM fraction with molecular weight (MW) <1000 Da (1 kDa) is the dominant fraction among all the fractionated water samples. Its percentage ranged from 54.29% to 69.76% between raw and disinfection processes stages in
UWKP. During treatment process, higher MW fractions were removed more efficiently than MW< 1kDa, especialy coagulation step. This result showed that low molecular weight organics are relatively hydrophilic and not effectively removed by coagulation. Disinfection stage had limited effect on removing organic fractions. On the other hand, as the raw water samples was chlorinated, the highest trihalomethane formation potential (THMFP) was observed the fraction of < 1kDa as 163.2 μg/L during the reaction
times of 168 hours and followed by 1-3kDa (15.3 μg/L), 3-5kDa (12.6 μg/L) and >5kDa (8.4 μg/L), respectively., The highest specific trihalomethane formation potential (STHMFP) concentration was determined MW<1kDa as 35.8 μg THMFP/ mg TOC. As a result, the findings of this study demonstrated that the deterrmination of NOM fractions with the UF technique may be an applicable strategy for operation of conventional drinking water treatment plants.

References

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 22th ed. American Public Health Association, Washington DC. http://www.apha.org/
  • Awad, J., Van Leeuwen, J., Chow, C., Drikas, M., Smernick J., Bestland, E. 2016. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters. J. Hazard Mater. 308:430-439. DOI: https://doi.org/10.1016/j.jhazmat.2016.01.030.
  • Brockmeyer, B., Spitzy, A. 2013. Evaluation of a Disc Tube Methodology for Nano- and Ultrafiltration of Natural Dissolved Organic Matter (DOM). Int. J. Organic. Chem. 3: 17-25. DOI: http://dx.doi.org/10.4236/ijoc.2013.31A002
  • Chen, Z., Zhao, S., Shen, J., Huo, X., Li, J., Zhou,Y., Kang, J., Zhang, X., Wang, B. 2021. Variations of disinfection byproduct precursors through conventional drinking water treatment processes and a real-time monitoring method. Chemosphere. 272: 1-11. DOI: https://doi.org/10.1016/j.chemosphere.2021.129930.
  • Chen, C., Zhang, X., Zhu, L., Liu, J., He, W., Han, H. 2008. Disinfection by-products and their precursors in a water treatment plant in North China: seasonal changes and fraction analysis. Sci. Total Environ. 397: 140–147. DOI: 10.1016/j.scitotenv.2008.02.032
  • Chow, A.T., Gao, S., Dahlgren, R.A. 2005. Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: a review, J.Water Supply, 54(8): 475–507 DOI: https://doi.org/10.2166/aqua.2005.0044
  • Chu, W., Yao, D., Deng, Y., Sui, M., Gao, N. 2017. Production of trihalomethanes,haloacetaldehydes and haloacetonitriles during chlorination of microcystin-LR and impacts of pre-oxidation on their formation. J. Hazard Mater. 327: 153-160. DOI: https://doi.org/10.1016/j.jhazmat.2016.12.058
  • Chuang, Y.H., Tung, H.H. 2015. Formation of Trichloronitromethane and Dichloroacetonitrile in Natural Waters: Precursor Characterization, Kinetics and Interpretation J. Harzard. Mater. 108:1-34. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.09.026
  • Fabris, R., Chow, C.W.K., Drikas, M., Eikebrokk, B. 2008. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res. 42: 4188–4196. DOI: 10.1016/j.watres.2008.06.023
  • Galjaard, G., E. Koreman, E., Metcalfe, D., G. Moore, G., Ericsson, P. 2018. NOM-removal by the SIX-process. Water Pract. Technol. 13(3): 254-541. DOI: 10.2166/wpt.2018.072.
  • Gang, D., Clevenger, T. E., Banerji, S.K. 2003. Relationship of chlorine decay and THMs formation to NOM size. J. Hazard Mater. 96(1): 1–12. DOI: 10.106/s0304-3894(2)00164-4.
  • Gu, J.D., Fan, X.J., Li, H.B., Zhao, Z.Y. 2006. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. J. Hazard Mater. 134: 60-66. DOI: 10.1016/j.jhazmat.2005.10.032.
  • Han, Q., Yan, H., Zhang, F., Xue, N., Wang, Y., Chu, Y., Gao, B. 2015. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for biotreated municipal wastewater: molecular weight, hydrophobicity/hydrophily and fluorescence. J. Hazard Mater. 297: 119-126. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.070.
  • Han, J., Zhang, X. 2018. Evaluating the comparative toxicity of DBP mixtures fromdifferent disinfection scenarios: a new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay. Environ. Sci. Technol. 52: 10552-10561. DOI: https://doi.org/10.1021/acs.est.8b02054.
  • Hua, G., Reckhow, D.A. 2007. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ. Sci. Technol. 41: 3309–3315. DOI: 10.1021/es062178c.
  • Imai, A., Matsushige, K., Nagai, T. 2003. Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Res, 37: 4284–4294. DOI: 10.1016/S0043-1354(03)00310-5.
  • Jiang, J., Li, W., Zhang, X., Liu, J., Zhu, X. 2018. A new approach to controlling halogenated DBPs by GAC adsorption of aromatic intermediates from chlorine disinfection: effects of bromide and contact time. Separ. Purif. Technol. 203: 260-267. DOI: https://doi.org/10.1016/j.seppur.2018.04.050.
  • Karapinar, N., Uyak, V., Soylu, S., Topal, T. 2014. Seasonal Variations of NOM Composition and their Reactivity in a Low Humic Water. Environ. Prog. Sustain. Energy. 33(3): 962-971. DOI: 10.1002/ep.11878.
  • Kottelat, R., Vignati, D. A. L., Chanudet, V. & Dominik, J. 2008. Comparison of small- and large-scale ultrafiltration systems for organic carbon and metals in freshwater at low concentration factor. Water Air Soil Pollut. 187(1): 343–351. DOI: 10.1007/s11270-007-9504-z.
  • Kristiana, I., Tan, J., Joll, C.A., Heitz, A., von Gunten, U., Charrois, J.W.A. 2013. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. Water Res. 47 (2), 535–546. DOI: 10.1016/j.watres.2012.10.014.
  • Li, J., Moe, B., Vemula, S., Wang, W., Li, X.F. 2016. Emerging Disinfection Byproducts, Halobenzoquinones: Effects of Isomeric Structure and Halogen Substitution on Cytotoxicity, Formation of Reactive Oxygen Species, and Genotoxicity Environ. Sci. Technol. 50: 67446752. DOI: 10.1021/acs.est.5b05585
  • Matilainen, A., Lindqvist, N., Korhonen, S., Tuhkanen, T. 2002. Removal of NOM in the different stages of the water treatment process, Environ. Int. 28: 457–465. DOI: 10.1016/s0160-4120(02)00071-5.
  • Mao, Y., Guo, D., Yao, W., Wang, X., Yang, H., Xie, Y.F., Komarneni, S., Yu, G., Wang, Y. 2018. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. Water Res. 130: 322-332. DOI: https://doi.org/10.1016/j.watres.2017.12.019.
  • Niu, Z., Zhao, P., Zhang, N., Zhang, Y. 2018. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes. J. Environ. Sci. 65: 179-189. DOI: http://dx.doi.org/10.1016/j.jes.2017.03.013.
  • Nkambule, T.T.I., Mamba, B., Msagati, T.A.M., Ncube, E.C., Marais, S.S. 2019. Assessment of trihalomethane (THM) precursors using specific ultraviolet absorbance (SUVA) and molecular size distribution (MSD). J. Water. Process. Eng. 27: 143-151. DOI: https://doi.org/10.1016/j.jwpe.2018.11.0
  • Özdemir, K. 2016. The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater Nanotechnol.,6: 1-12. DOI: 10.1177/1847980416663680.
  • Roe, J., Baker, A., Bridgeman, J. 2008. Relating organic matter character to trihalomethanes formation potential: a data mining approach, Water Sci. Technol. 8(6): 717–723. DOI:10.2166/ws.2008.150 Sillanpää, M., Bhatnagar, A., Hed, L., Lahtinen, T., Gjessing, ET., Matilainen, A. 2011. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 83: 1431-1442. DOI: 10.1016/j.chemosphere.2011.01.018.
  • Song, J., Jin, P., Jin, X., Wang, X.C. 2019. Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid. Water Res. 148, 106-114. DOI: https://doi.org/10.1016/j.watres.2018.10.039.
  • Schwalger, B., Spitzy, A. 2009. Separation of natural organic colloids with a PALL tangential flow filtration system. Water Sci. Technol. 9(5): 583-590. DOI: 10.2166/ws.2009.574
  • Swietlik,, J., Dabrowska, A., Raczyk-Stanislawiak, U., Nawrocki, J. 2004. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 38: 547–558. DOI: 10.1016/j.watres.2003.10.034.
  • USEPA (US Environmental Protection Agency), 1998. National primary drinking water regulations: disinfectants and disinfection byproducts notice of data availability. Fed. Regist. 63 (61): 15673-15692. http://www.epa.gov/.
  • Uyak, V., Özdemir, K., Toröz, İ. 2007. Seasonal variations of disinfection by-productprecursors profile and their removal through surface water treatment plants. Sci. Total. Environ.390: 417-424. DOI: 10.1016/j.scitotenv.2007.09.046.
  • Wang, DS., Feng, CH., Wei, QS., Shi, B., Zhang, L., Tang, HX. 2008a. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: a case study J. Hazard Mater. 150: 257-264. DOI: 10.1016/j.jhazmat.2007.04.096
  • Wei, Q., Feng, C., Wang, D., Shi, B., Zhang, L., Wei, Q., Tang, H. 2008a. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: a case study. J. Hazard. Mater. 150: 257–264. DOI: 10.1016/j.jhazmat.2007.04.096.
  • Wei, Q., Wang, D., Qiao, C., Shi, B., Tang, H. 2008b. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China. Environ. Monit. Asses. 141: 347-357. DOI: 10.1007/s10661-007-9901-1.
  • Wilding, A., Liu, R., Zhou, J. L. 2005. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system. J. Colloid Interface Sci. 287(1): 152–158. DOI:10.1016/j.jcis.2005.01.114.
  • Xu, B., Zhu, H.-Z., Lin, Y.-L., Shen, K.-Y., Chu, W.-H., Hu, C.-Y., Tian, K.-N.,Mwakagenda, S.A., Bi, X.-Y. 2012. Formation of volatile halogenated byproducts during the chlorination of oxytetracycline. Water Air Soil Pollut. 223: 4429- 4436. DOI: https://doi.org/10.1007/s11270-012-1206-5.
  • Yan, M., Roccaro, P., Fabbricino, M., Korshin, G.V. 2018. Comparison of the effects ofchloramine and chlorine on the. aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere. 191: 477-484. DOI: https://doi.org/ 10.1016/j.chemosphere.2017.10.063.
  • Yang, P., Huan, L., Xiangru, Z., Aimin, L. 2016. Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. Trends Environ. Anal. Chem. 12: 23-30. DOI: http://dx.doi.org/doi:10.1016/j.teac.2016.11.002.
  • Zha, X.S., Liu, Y., Liu, X., Zhang, Q., Dai, R.H., Ying, L.W. 2014. Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters. Environ. Sci. Pollut. Res. 21 (4): 2714–2723. DOI: 10.1007/s11356-013-2176-x
  • Zhang, X., Chen, Z., Shen, J., Zhao, S., Kang, J., Chu, W., Zhou, Y., Wang, B. 2020. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere. 242: 125227. DOI: https://doi.org/10.1016/j.chemosphere.2019.125227.
  • Zhao, Z.-Y., Gu, J.-D., Fan, X.-J., Li, H.-B. 2006. Molecularsize distribution of dissolved organic matter in water of thePearl River and trihalomethane formation characteristics withchlorine and chlorine dioxide treatments. J. Hazard Mater. 134(1–3): 60–66, DOI: 10.1016/j.jhazmat.2005.10.032.
  • Zhao, Y., Xiao, F., Wang, D., Yan, M., Bi, Z. 2013. Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions. J. Environ. Sci. 25 (11): 2207–2213. DOI: 10.1016/s1001-0742(12)60286-1
  • Zheng, Q., Yang, X., Deng, W., Le, X.C., Li, X.F. 2016. Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation. J. Environ. Sci. 42 (4): 1–5. DOI:10.1016/j.jes.2016.03.005

Konvansiyonel İçme Suyu Arıtma Tesislerinde Doğal Organik Maddenin Moleküler Ağırlık Dağılımı ve Trihalometan Oluşumunun Özellikleri

Year 2022, Volume: 12 Issue: 2, 146 - 154, 24.12.2022

Abstract

Bu çalışmada Zonguldak iline içme suyu sağlayan Ulutan içme suyu arıtma tesisi (USAT) ünitelerinden (Ham su, koagülasyon ve dezenfeksiyon) alın su numunelerinde bulunan doğal organik madde (DOM) karakteizasyonu ultrafiltrasyon (UF) tekniği kullanılarak gerçekleştirilmiştir. DOM fraksiyonlarının dağılımı UF prosesi ile toplam organik karbon (TOK) konsantrasyon değerleri esas alınarak karbon kütle dengesine göre yapılmıştır. USAT’de ham sudan dezenfeksiyon ünitelerinden alınan su numunelerinde UF prosesi ile karakterize edilmiş bütün organik fraksiyonlar arasında en fazla bulunan moleküler ağırlığı (MA) 1000 Da (1kDa)’dan daha küçük olan organik fraksiyonlar olduğu tespit edilmiştir. Ham sudan dezenfeksiyon ünitesine kadar 1kDa’dan küçük olan NOM fraksiyonlarının bulunma yüzdesi %54.26-%69.76 arasında yer almaktadır. Arıtma prosesi süresince, en yüksek giderim verimi koagülasyon adımında ve MA yüksek olan organik fraksiyonlarda meydana gelmiştir. Bu sonuç aynı zamanda koagülasyon prosesinde
düşük MA sahip hidrofilik özellikteki fraksiyonların etkili bir şekilde giderilemediğini göstermektedir. Diğer yandan tüm organik fraksiyonlarda en düşük giderim verimi dezenfeksiyon prosesinde meydana gelmiştir. Klorlanmış ham su numunelerinde 168 saatlik reaksiyon süresinde en yüksek trihalometan oluşum potansiyeli (THMOP) miktarı (163.2 μg/L) MA 1kDa’dan küçük olan DOM fraksiyonlarda görülürken, sırası ile MA 1-3kDa olanlarda 15.3 μg/L, 3-5kDa olanlarda 12.6 μg/L ve MA 5kDa’dan büyük olan fraksiyonlarda ise 8.4 μg/L olarak ölçülmüştür. Bununla birlikte, DOM fraksiyonları arasında en yüksek spesifik trihalometan oluşum
potansiyeli (STHMOP) konsantrasyonu (35.8 μg THMFP/ mg TOK) MA 1kDa’dan küçük olan fraksiyonlarda gözlenmiştir. Bu çalışmada elde edilen bulgular UF tekniği ile DOM fraksiyonlarının tespit edilmesinin konvansiyonel içme suyu arıtma tesislerinin işletmesinde uygulanabilir bir strateji olduğunu ortaya koymaktadır.

References

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 22th ed. American Public Health Association, Washington DC. http://www.apha.org/
  • Awad, J., Van Leeuwen, J., Chow, C., Drikas, M., Smernick J., Bestland, E. 2016. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters. J. Hazard Mater. 308:430-439. DOI: https://doi.org/10.1016/j.jhazmat.2016.01.030.
  • Brockmeyer, B., Spitzy, A. 2013. Evaluation of a Disc Tube Methodology for Nano- and Ultrafiltration of Natural Dissolved Organic Matter (DOM). Int. J. Organic. Chem. 3: 17-25. DOI: http://dx.doi.org/10.4236/ijoc.2013.31A002
  • Chen, Z., Zhao, S., Shen, J., Huo, X., Li, J., Zhou,Y., Kang, J., Zhang, X., Wang, B. 2021. Variations of disinfection byproduct precursors through conventional drinking water treatment processes and a real-time monitoring method. Chemosphere. 272: 1-11. DOI: https://doi.org/10.1016/j.chemosphere.2021.129930.
  • Chen, C., Zhang, X., Zhu, L., Liu, J., He, W., Han, H. 2008. Disinfection by-products and their precursors in a water treatment plant in North China: seasonal changes and fraction analysis. Sci. Total Environ. 397: 140–147. DOI: 10.1016/j.scitotenv.2008.02.032
  • Chow, A.T., Gao, S., Dahlgren, R.A. 2005. Physical and chemical fractionation of dissolved organic matter and trihalomethane precursors: a review, J.Water Supply, 54(8): 475–507 DOI: https://doi.org/10.2166/aqua.2005.0044
  • Chu, W., Yao, D., Deng, Y., Sui, M., Gao, N. 2017. Production of trihalomethanes,haloacetaldehydes and haloacetonitriles during chlorination of microcystin-LR and impacts of pre-oxidation on their formation. J. Hazard Mater. 327: 153-160. DOI: https://doi.org/10.1016/j.jhazmat.2016.12.058
  • Chuang, Y.H., Tung, H.H. 2015. Formation of Trichloronitromethane and Dichloroacetonitrile in Natural Waters: Precursor Characterization, Kinetics and Interpretation J. Harzard. Mater. 108:1-34. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.09.026
  • Fabris, R., Chow, C.W.K., Drikas, M., Eikebrokk, B. 2008. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res. 42: 4188–4196. DOI: 10.1016/j.watres.2008.06.023
  • Galjaard, G., E. Koreman, E., Metcalfe, D., G. Moore, G., Ericsson, P. 2018. NOM-removal by the SIX-process. Water Pract. Technol. 13(3): 254-541. DOI: 10.2166/wpt.2018.072.
  • Gang, D., Clevenger, T. E., Banerji, S.K. 2003. Relationship of chlorine decay and THMs formation to NOM size. J. Hazard Mater. 96(1): 1–12. DOI: 10.106/s0304-3894(2)00164-4.
  • Gu, J.D., Fan, X.J., Li, H.B., Zhao, Z.Y. 2006. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. J. Hazard Mater. 134: 60-66. DOI: 10.1016/j.jhazmat.2005.10.032.
  • Han, Q., Yan, H., Zhang, F., Xue, N., Wang, Y., Chu, Y., Gao, B. 2015. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for biotreated municipal wastewater: molecular weight, hydrophobicity/hydrophily and fluorescence. J. Hazard Mater. 297: 119-126. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.070.
  • Han, J., Zhang, X. 2018. Evaluating the comparative toxicity of DBP mixtures fromdifferent disinfection scenarios: a new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay. Environ. Sci. Technol. 52: 10552-10561. DOI: https://doi.org/10.1021/acs.est.8b02054.
  • Hua, G., Reckhow, D.A. 2007. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ. Sci. Technol. 41: 3309–3315. DOI: 10.1021/es062178c.
  • Imai, A., Matsushige, K., Nagai, T. 2003. Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Res, 37: 4284–4294. DOI: 10.1016/S0043-1354(03)00310-5.
  • Jiang, J., Li, W., Zhang, X., Liu, J., Zhu, X. 2018. A new approach to controlling halogenated DBPs by GAC adsorption of aromatic intermediates from chlorine disinfection: effects of bromide and contact time. Separ. Purif. Technol. 203: 260-267. DOI: https://doi.org/10.1016/j.seppur.2018.04.050.
  • Karapinar, N., Uyak, V., Soylu, S., Topal, T. 2014. Seasonal Variations of NOM Composition and their Reactivity in a Low Humic Water. Environ. Prog. Sustain. Energy. 33(3): 962-971. DOI: 10.1002/ep.11878.
  • Kottelat, R., Vignati, D. A. L., Chanudet, V. & Dominik, J. 2008. Comparison of small- and large-scale ultrafiltration systems for organic carbon and metals in freshwater at low concentration factor. Water Air Soil Pollut. 187(1): 343–351. DOI: 10.1007/s11270-007-9504-z.
  • Kristiana, I., Tan, J., Joll, C.A., Heitz, A., von Gunten, U., Charrois, J.W.A. 2013. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. Water Res. 47 (2), 535–546. DOI: 10.1016/j.watres.2012.10.014.
  • Li, J., Moe, B., Vemula, S., Wang, W., Li, X.F. 2016. Emerging Disinfection Byproducts, Halobenzoquinones: Effects of Isomeric Structure and Halogen Substitution on Cytotoxicity, Formation of Reactive Oxygen Species, and Genotoxicity Environ. Sci. Technol. 50: 67446752. DOI: 10.1021/acs.est.5b05585
  • Matilainen, A., Lindqvist, N., Korhonen, S., Tuhkanen, T. 2002. Removal of NOM in the different stages of the water treatment process, Environ. Int. 28: 457–465. DOI: 10.1016/s0160-4120(02)00071-5.
  • Mao, Y., Guo, D., Yao, W., Wang, X., Yang, H., Xie, Y.F., Komarneni, S., Yu, G., Wang, Y. 2018. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. Water Res. 130: 322-332. DOI: https://doi.org/10.1016/j.watres.2017.12.019.
  • Niu, Z., Zhao, P., Zhang, N., Zhang, Y. 2018. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes. J. Environ. Sci. 65: 179-189. DOI: http://dx.doi.org/10.1016/j.jes.2017.03.013.
  • Nkambule, T.T.I., Mamba, B., Msagati, T.A.M., Ncube, E.C., Marais, S.S. 2019. Assessment of trihalomethane (THM) precursors using specific ultraviolet absorbance (SUVA) and molecular size distribution (MSD). J. Water. Process. Eng. 27: 143-151. DOI: https://doi.org/10.1016/j.jwpe.2018.11.0
  • Özdemir, K. 2016. The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater Nanotechnol.,6: 1-12. DOI: 10.1177/1847980416663680.
  • Roe, J., Baker, A., Bridgeman, J. 2008. Relating organic matter character to trihalomethanes formation potential: a data mining approach, Water Sci. Technol. 8(6): 717–723. DOI:10.2166/ws.2008.150 Sillanpää, M., Bhatnagar, A., Hed, L., Lahtinen, T., Gjessing, ET., Matilainen, A. 2011. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 83: 1431-1442. DOI: 10.1016/j.chemosphere.2011.01.018.
  • Song, J., Jin, P., Jin, X., Wang, X.C. 2019. Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid. Water Res. 148, 106-114. DOI: https://doi.org/10.1016/j.watres.2018.10.039.
  • Schwalger, B., Spitzy, A. 2009. Separation of natural organic colloids with a PALL tangential flow filtration system. Water Sci. Technol. 9(5): 583-590. DOI: 10.2166/ws.2009.574
  • Swietlik,, J., Dabrowska, A., Raczyk-Stanislawiak, U., Nawrocki, J. 2004. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 38: 547–558. DOI: 10.1016/j.watres.2003.10.034.
  • USEPA (US Environmental Protection Agency), 1998. National primary drinking water regulations: disinfectants and disinfection byproducts notice of data availability. Fed. Regist. 63 (61): 15673-15692. http://www.epa.gov/.
  • Uyak, V., Özdemir, K., Toröz, İ. 2007. Seasonal variations of disinfection by-productprecursors profile and their removal through surface water treatment plants. Sci. Total. Environ.390: 417-424. DOI: 10.1016/j.scitotenv.2007.09.046.
  • Wang, DS., Feng, CH., Wei, QS., Shi, B., Zhang, L., Tang, HX. 2008a. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: a case study J. Hazard Mater. 150: 257-264. DOI: 10.1016/j.jhazmat.2007.04.096
  • Wei, Q., Feng, C., Wang, D., Shi, B., Zhang, L., Wei, Q., Tang, H. 2008a. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: a case study. J. Hazard. Mater. 150: 257–264. DOI: 10.1016/j.jhazmat.2007.04.096.
  • Wei, Q., Wang, D., Qiao, C., Shi, B., Tang, H. 2008b. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China. Environ. Monit. Asses. 141: 347-357. DOI: 10.1007/s10661-007-9901-1.
  • Wilding, A., Liu, R., Zhou, J. L. 2005. Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system. J. Colloid Interface Sci. 287(1): 152–158. DOI:10.1016/j.jcis.2005.01.114.
  • Xu, B., Zhu, H.-Z., Lin, Y.-L., Shen, K.-Y., Chu, W.-H., Hu, C.-Y., Tian, K.-N.,Mwakagenda, S.A., Bi, X.-Y. 2012. Formation of volatile halogenated byproducts during the chlorination of oxytetracycline. Water Air Soil Pollut. 223: 4429- 4436. DOI: https://doi.org/10.1007/s11270-012-1206-5.
  • Yan, M., Roccaro, P., Fabbricino, M., Korshin, G.V. 2018. Comparison of the effects ofchloramine and chlorine on the. aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere. 191: 477-484. DOI: https://doi.org/ 10.1016/j.chemosphere.2017.10.063.
  • Yang, P., Huan, L., Xiangru, Z., Aimin, L. 2016. Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches. Trends Environ. Anal. Chem. 12: 23-30. DOI: http://dx.doi.org/doi:10.1016/j.teac.2016.11.002.
  • Zha, X.S., Liu, Y., Liu, X., Zhang, Q., Dai, R.H., Ying, L.W. 2014. Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters. Environ. Sci. Pollut. Res. 21 (4): 2714–2723. DOI: 10.1007/s11356-013-2176-x
  • Zhang, X., Chen, Z., Shen, J., Zhao, S., Kang, J., Chu, W., Zhou, Y., Wang, B. 2020. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere. 242: 125227. DOI: https://doi.org/10.1016/j.chemosphere.2019.125227.
  • Zhao, Z.-Y., Gu, J.-D., Fan, X.-J., Li, H.-B. 2006. Molecularsize distribution of dissolved organic matter in water of thePearl River and trihalomethane formation characteristics withchlorine and chlorine dioxide treatments. J. Hazard Mater. 134(1–3): 60–66, DOI: 10.1016/j.jhazmat.2005.10.032.
  • Zhao, Y., Xiao, F., Wang, D., Yan, M., Bi, Z. 2013. Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions. J. Environ. Sci. 25 (11): 2207–2213. DOI: 10.1016/s1001-0742(12)60286-1
  • Zheng, Q., Yang, X., Deng, W., Le, X.C., Li, X.F. 2016. Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation. J. Environ. Sci. 42 (4): 1–5. DOI:10.1016/j.jes.2016.03.005
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Kadir Özdemir 0000-0003-1464-7078

Publication Date December 24, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Özdemir, K. (2022). Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes. Karaelmas Fen Ve Mühendislik Dergisi, 12(2), 146-154. https://doi.org/10.7212/karaelmasfen.1030174
AMA Özdemir K. Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes. Karaelmas Fen ve Mühendislik Dergisi. December 2022;12(2):146-154. doi:10.7212/karaelmasfen.1030174
Chicago Özdemir, Kadir. “Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes”. Karaelmas Fen Ve Mühendislik Dergisi 12, no. 2 (December 2022): 146-54. https://doi.org/10.7212/karaelmasfen.1030174.
EndNote Özdemir K (December 1, 2022) Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes. Karaelmas Fen ve Mühendislik Dergisi 12 2 146–154.
IEEE K. Özdemir, “Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes”, Karaelmas Fen ve Mühendislik Dergisi, vol. 12, no. 2, pp. 146–154, 2022, doi: 10.7212/karaelmasfen.1030174.
ISNAD Özdemir, Kadir. “Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes”. Karaelmas Fen ve Mühendislik Dergisi 12/2 (December 2022), 146-154. https://doi.org/10.7212/karaelmasfen.1030174.
JAMA Özdemir K. Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes. Karaelmas Fen ve Mühendislik Dergisi. 2022;12:146–154.
MLA Özdemir, Kadir. “Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 12, no. 2, 2022, pp. 146-54, doi:10.7212/karaelmasfen.1030174.
Vancouver Özdemir K. Characteristics of Molecular Weight Distribution of Natural Organic Matter and Trihalomethane Formation Properties in Conventional Drinking Water Treatment Processes. Karaelmas Fen ve Mühendislik Dergisi. 2022;12(2):146-54.