Derleme
BibTex RIS Kaynak Göster

Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler

Yıl 2023, Cilt: 13 Sayı: 1, 217 - 223, 30.06.2023

Öz

Bakteriyel ekzopolisakkaritler (EPS'ler), birçok bakteri tarafından sentezlenen biyomoleküller olup çevresel koruma, yüzey yapışması ve hücresel etkileşimler gibi çeşitli biyolojik işlevlere sahiptir. Güçlü biyouyumlu özellikleri, onları çeşitli uygulamalara uygun hale getirmektedir. Kanser, dünyadaki en büyük hastalık yüklerinden biridir, bu nedenle kanser için yeni kemoterapötik etkili ajanlar ve tedaviler geliştirmek için çok sayıda bilimsel çalışma yürütülmektedir. Literatür bilgileri, EPS’lerin kanser hücrelerinin çoğalmasını, anjiyogenezisini ve metastazını engelleyebileceğini ve apoptozu uyarabileceğini göstermektedir. EPS’lerin meme, kolon, akciğer ve mide kanserine etkileri bilimsel çalışmalarla kanıtlanmıştır. Bu derleme, bakteriyel EPS’lerin antikanser özelliğini kısaca özetlemekte ve kemoterapi ve radyoterapinin yan etkilerini azaltabilecek bir ajan olarak potansiyel faydalarını vurgulayarak açıklamaktadır.

Kaynakça

  • Abdel Fattah, AM., Gamal Eldeen, AM., Helmy, WA., Esawy, MA. 2012. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydrate Polymers, 89(2): 314-322.
  • Aslim, B., Yüksekdağ, ZN., Beyatli, Y., Mercan, N. 2005. Exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World Journal of Microbiology and Biotechnology, 21(5): 673–677.
  • Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev., 7(1-2):113-130.
  • Chenu, C. 1995. “Extracellular polysaccharides: an interface between microorganisms and soil constituents,” In: Huang, P.M., Berthelin, J. Bollag, J.M., Mcgill, W.B., Page, A.L,editors. Environmental Impact of Soil Component Interactions. Natural and Anthropogenic Organics.Boca Raton, FL: CRC Lewis Publishers,1995.pp.75-85.
  • Chen, YT., Lu, QY., Lin, MA., Cheng, DQ., Ding, ZS., Shan, LT. 2011. A PVP-extract fungal protein of Omphalia lapideacens and its antitumor activity on human gastric tumors and normal cells. Oncol Rep., 26(6):1519-1526.
  • Chen, YT., Yuan, Q., Shan, LT., Lin, MA., Cheng, DQ., Li, CY. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Lett., 5(6):1787-1792.
  • Chiu, TH., Lai, WW., Hsia, TC., Yang, JS., Lai, TY., Wu, PP., Ma,CY., Yeh, CC., Ho, CC., Lu, HF., Wood, WG., Chung, JG. 2009. Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells. Anticancer Res., 29:4503–4511.
  • Commane, D., Hughes. R,, Shortt. C., Rowland, I. 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res., 591(1-2):276-289.
  • Costa, OYA., Raaijmakers, JM., Kuramae, EE. 2018. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol., 9:1636.
  • Cumashi, A., Ushakova, NA., Preobrazhenskaya, ME., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, GE., Berman, AE., Bilan, MI., Usov, AI., Ustyuzhanina, NE., Grachev, AA., Sanderson, CJ., Kelly, M., Rabinovich, GA., Iacobelli, S., Nifantiev, NE. 2007; Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 17(5):541-552.
  • Di, W., Zhang, L., Yi, H., Han, X., Zhang. Y., Xin, L. 2018. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol. Lett., 16(3):3577-3586.
  • Ehrke, MJ. 2003. Immunomodulation in cancer therapeutics. Int. Immunopharmacol.3(8):1105-1119.
  • Erejuwa, OO., Sulaiman, SA., Wahab, MS. 2014. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules. 19(2):2497-2522.
  • Farag, MMS., Moghannem, SAM., Shehabeldine, AM., Azab, MS. 2020. Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb. Pathog., 140:103947.
  • Flemming, HC., Wingender, J. 2010. The biofilm matrix. Nat Rev Microbiol., 8(9):623-633.
  • Górska-Frączek, S., Sandström, C., Kenne, L., Paściak, M., Brzozowska, E., Strus, M., Heczko, P., Gamian, A. 2013. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr. Res., 378:148–153.
  • Houari, A., Picard, J., Habarou, H., Galas, L., Vaudry, H., Heim, V., Di Martino, P. 2008. Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit. Biofouling. 24(4):235-240.
  • Igarashi, Y., Trujillo, ME., Martínez-Molina, E., Yanase, S., Miyanaga, S., Obata,. T, Sakurai, H., Saiki, I,, Fujita, T., Furumai, T. 2007. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg. Med. Chem. Lett., 17(13):3702-3705.
  • Jemal, A., Bray, F., Center, MM., Ferlay, J., Ward, E., Forman, D. 2011. Global cancer statistics. CA Cancer J. Clin., 61(2):69-90.
  • Jesus Raposo, MF., de Morais, AM., de Morais, RM. 2015. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs., 13(5):2967-3028.
  • Király, Z., El-Zahaby, HM., Klement, Z. 1997. Role of extracellular polysaccharide (EPS) slime of plant pathogenic bacteria in protecting cells to reactive oxygen species. J. Phytopathol., 145(2-3):59–68.
  • Lehman, AP., Long, SR. 2013. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J. Bacteriol., 195(23):5362-5369.
  • Liang, TW., Tseng, SC., Wang, SL. 2016. Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar. Drugs., 14(2):40.
  • Liu, J., Luo, J., Ye, H., Zeng, X. 2012. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol., 50(3-4):767-772.
  • Li, Y., Guo, S., Zhu, H. 2016. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro. EXCLI J., 15:211-220.
  • Mahgoub, AM., Gehan, AE. 2016. Quince polysaccharides induced apoptosis in human colon cancer cells (HCT-116). Res. In. Can. Tumor, 5:1–9.
  • Mahgoub, AM., Mahmoud, MG., Selim, MS., El Awady, ME. 2018. Exopolysaccharide from Marine Bacillus velezensis MHM3 Induces Apoptosis of Human Breast Cancer MCF-7 Cells through a Mitochondrial Pathway. Asian Pac. J. Cancer Prev.,19(7):1957-1963.
  • Manca de Nadra, MC., Strasser de Saad, AM., Pesce de Ruiz Holgado, AA., Oliver, G. 1985. Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft. 40:409-411.
  • Maugeri, TL., Gugliandolo, C., Caccamo, D., Panico, A., Lama, L., Gambacorta, A., Nicolaus, B. 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett., 24:515–519.
  • Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, RM., Remaud-Siméon, M. 2001. Homopolysaccharides fromlactic acid bacteria, Int. Dairy J., 11(9):675–685.
  • Moore, BG., Tischer, RG. 1964. Extracellular polysaccharides of algae: effects on life-support systems. Science. 145(3632):586-587.
  • Mozzi, F., Oliver, G., Savoy de Giori, G., Font de Valdez, FG. 1995. Influence of temperature on the production of exopoly saccharides by thermophilic lactic acid bacteria. Milchwissenschaft. 50:80-82.
  • Mozzi, F., Vaningelgem, F., Hébert, EM., Van der Meulen, R., Foulquié Moreno, MR., Font de Valdez, G., De Vuyst, L. 2006. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol., 72(6):4431-4435.
  • Nguyen, DT., Nguyen, TH. 2014. Detection on Antioxidant and Cytotoxicity Activities of Exopolysaccharides Isolated in Plant-Originated Lactococcus lactis. Biomed. Pharmacol. J., 7(1):33-38.
  • Nguyen, MR.,Osipo, C., Knight, KL. 2020. Abstract 6101: Exopolysaccharide secreted by Bacillus subtilis alters breast cancer cell growth and stemness. Cancer Res., 80(16_Supplement): 6101.
  • Nie, SP., Xie, MY. 2011. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids. 25(2):144-149.
  • Payne, DE., Boles, BR. 2016. Emerging interactions between matrix components during biofilm development. Curr. Genet., 62(1):137-41.
  • Ramamoorthy, S., Gnanakan, A., Lakshmana, S., Meivelu, M., Jeganathan, A. 2018. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.Carbohydr. Polym., 190:113-120.
  • Roberson, EB., Firestone, MK. 1992. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl. Environ. Microbiol., 58(4):1284-1291.
  • Roca, C., Alves, VD., Freitas, F., Reis, MA. 2015. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front. Microbiol., 6:288.
  • Shaw, T., Winston, M., Rupp, CJ., Klapper, I., Stoodley, P. 2004. Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett., 93(9):098102.
  • Solmaz, KB., Ozcan, Y., Mercan Dogan, N., Bozkaya, O., Ide, S. 2018. Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10. Environments. 5(6):63.
  • Tahmourespour, A., Ahmadi, A., Fesharaki, M. 2020. The anti-tumor activity of exopolysaccharides from Pseudomonas strains against HT-29 colorectal cancer cell line. Int. J. Biol. Macromol., 149:1072-1076.
  • Tuinier, R., Zoon, P., Olieman, C., Stuart, MA., Fleer, GJ., de Kruif, CG. 1999. Isolation and physical characterization of an exocellular polysaccharide. Biopolymers. 49(1):1-9.
  • Vinothkanna, A., Sathiyanarayanan, G., Balaji, P., Mathivanan, K., Pugazhendhi, A., Ma, Y., Sekar, S., Thirumurugan, R. 2021. Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from Indian polyherbal fermented traditional medicine. Int. J. Biol. Macromol., 174:144-152.
  • Wollowski, I., Rechkemmer, G., Pool-Zobel, BL. 2001. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr., 73(2 Suppl):451S-455S.
  • Wong, YN., Chang, WC., Clapper, M. Engstrom, PF. 2007. Chemoprevention of colorectal cancer.In:Saltz LB,Markman M,editors.Colorectal Cancer: Evidence-Based Chemotherapy Strategies. Humana Press. Inc.; Totowa NJ,pp.33–49.
  • Xiao, R., Zheng, Y. 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv., 34(7):1225-1244.
  • Zhang, JY., Tao, LY., Liang, YJ., Chen, LM., Mi, YJ., Zheng, LS., Wang, F., She, ZG., Lin, YC., To, KK., Fu, LW. 2010. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar. Drugs., 8(4):1469-1481.
  • Zhang, M., Tian, X., Wang, Y., Wang, D., Li, W., Chen, L., Pan, W., Mehmood, S., Chen, Y. 2018. Immunomodulating activity of the polysaccharide TLH-3 from Tricholomalobayense in RAW264.7 macrophages. Int. J. Biol. Macromol., 107(Pt B):2679-2685.

A Natural Compound with Anti-Cancer Effect: Bacterial Exopolysaccharides

Yıl 2023, Cilt: 13 Sayı: 1, 217 - 223, 30.06.2023

Öz

Bacterial exopolysaccharides (EPSs) are biomolecules synthesized by many bacteria and have a variety of biological functions such as
environmental protection, surface adhesion, and cellular interactions. Their strong biocompatible properties make them suitable for
a variety of applications. As it is known, the disease burden of cancer is enormous both in terms of health and economy, therefore
numerous studies are being conducted to develop new chemotherapeutic agents and treatments for cancer by researchers. Literature
information indicates that EPSs can inhibit proliferation, angiogenesis and metastasis of cancer cells and stimulate apoptosis. The
effects of EPS on breast, colon, lung and stomach cancer have been proven by scientific studies. This review briefly summarizes
the anticancer properties of bacterial EPSs and highlights their potential benefits as an agent that can reduce the side effects of
chemotherapy and radiotherapy.

Kaynakça

  • Abdel Fattah, AM., Gamal Eldeen, AM., Helmy, WA., Esawy, MA. 2012. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydrate Polymers, 89(2): 314-322.
  • Aslim, B., Yüksekdağ, ZN., Beyatli, Y., Mercan, N. 2005. Exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World Journal of Microbiology and Biotechnology, 21(5): 673–677.
  • Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev., 7(1-2):113-130.
  • Chenu, C. 1995. “Extracellular polysaccharides: an interface between microorganisms and soil constituents,” In: Huang, P.M., Berthelin, J. Bollag, J.M., Mcgill, W.B., Page, A.L,editors. Environmental Impact of Soil Component Interactions. Natural and Anthropogenic Organics.Boca Raton, FL: CRC Lewis Publishers,1995.pp.75-85.
  • Chen, YT., Lu, QY., Lin, MA., Cheng, DQ., Ding, ZS., Shan, LT. 2011. A PVP-extract fungal protein of Omphalia lapideacens and its antitumor activity on human gastric tumors and normal cells. Oncol Rep., 26(6):1519-1526.
  • Chen, YT., Yuan, Q., Shan, LT., Lin, MA., Cheng, DQ., Li, CY. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Lett., 5(6):1787-1792.
  • Chiu, TH., Lai, WW., Hsia, TC., Yang, JS., Lai, TY., Wu, PP., Ma,CY., Yeh, CC., Ho, CC., Lu, HF., Wood, WG., Chung, JG. 2009. Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells. Anticancer Res., 29:4503–4511.
  • Commane, D., Hughes. R,, Shortt. C., Rowland, I. 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res., 591(1-2):276-289.
  • Costa, OYA., Raaijmakers, JM., Kuramae, EE. 2018. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol., 9:1636.
  • Cumashi, A., Ushakova, NA., Preobrazhenskaya, ME., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, GE., Berman, AE., Bilan, MI., Usov, AI., Ustyuzhanina, NE., Grachev, AA., Sanderson, CJ., Kelly, M., Rabinovich, GA., Iacobelli, S., Nifantiev, NE. 2007; Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 17(5):541-552.
  • Di, W., Zhang, L., Yi, H., Han, X., Zhang. Y., Xin, L. 2018. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol. Lett., 16(3):3577-3586.
  • Ehrke, MJ. 2003. Immunomodulation in cancer therapeutics. Int. Immunopharmacol.3(8):1105-1119.
  • Erejuwa, OO., Sulaiman, SA., Wahab, MS. 2014. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules. 19(2):2497-2522.
  • Farag, MMS., Moghannem, SAM., Shehabeldine, AM., Azab, MS. 2020. Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb. Pathog., 140:103947.
  • Flemming, HC., Wingender, J. 2010. The biofilm matrix. Nat Rev Microbiol., 8(9):623-633.
  • Górska-Frączek, S., Sandström, C., Kenne, L., Paściak, M., Brzozowska, E., Strus, M., Heczko, P., Gamian, A. 2013. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr. Res., 378:148–153.
  • Houari, A., Picard, J., Habarou, H., Galas, L., Vaudry, H., Heim, V., Di Martino, P. 2008. Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit. Biofouling. 24(4):235-240.
  • Igarashi, Y., Trujillo, ME., Martínez-Molina, E., Yanase, S., Miyanaga, S., Obata,. T, Sakurai, H., Saiki, I,, Fujita, T., Furumai, T. 2007. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg. Med. Chem. Lett., 17(13):3702-3705.
  • Jemal, A., Bray, F., Center, MM., Ferlay, J., Ward, E., Forman, D. 2011. Global cancer statistics. CA Cancer J. Clin., 61(2):69-90.
  • Jesus Raposo, MF., de Morais, AM., de Morais, RM. 2015. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs., 13(5):2967-3028.
  • Király, Z., El-Zahaby, HM., Klement, Z. 1997. Role of extracellular polysaccharide (EPS) slime of plant pathogenic bacteria in protecting cells to reactive oxygen species. J. Phytopathol., 145(2-3):59–68.
  • Lehman, AP., Long, SR. 2013. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J. Bacteriol., 195(23):5362-5369.
  • Liang, TW., Tseng, SC., Wang, SL. 2016. Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar. Drugs., 14(2):40.
  • Liu, J., Luo, J., Ye, H., Zeng, X. 2012. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol., 50(3-4):767-772.
  • Li, Y., Guo, S., Zhu, H. 2016. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro. EXCLI J., 15:211-220.
  • Mahgoub, AM., Gehan, AE. 2016. Quince polysaccharides induced apoptosis in human colon cancer cells (HCT-116). Res. In. Can. Tumor, 5:1–9.
  • Mahgoub, AM., Mahmoud, MG., Selim, MS., El Awady, ME. 2018. Exopolysaccharide from Marine Bacillus velezensis MHM3 Induces Apoptosis of Human Breast Cancer MCF-7 Cells through a Mitochondrial Pathway. Asian Pac. J. Cancer Prev.,19(7):1957-1963.
  • Manca de Nadra, MC., Strasser de Saad, AM., Pesce de Ruiz Holgado, AA., Oliver, G. 1985. Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft. 40:409-411.
  • Maugeri, TL., Gugliandolo, C., Caccamo, D., Panico, A., Lama, L., Gambacorta, A., Nicolaus, B. 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett., 24:515–519.
  • Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemot, RM., Remaud-Siméon, M. 2001. Homopolysaccharides fromlactic acid bacteria, Int. Dairy J., 11(9):675–685.
  • Moore, BG., Tischer, RG. 1964. Extracellular polysaccharides of algae: effects on life-support systems. Science. 145(3632):586-587.
  • Mozzi, F., Oliver, G., Savoy de Giori, G., Font de Valdez, FG. 1995. Influence of temperature on the production of exopoly saccharides by thermophilic lactic acid bacteria. Milchwissenschaft. 50:80-82.
  • Mozzi, F., Vaningelgem, F., Hébert, EM., Van der Meulen, R., Foulquié Moreno, MR., Font de Valdez, G., De Vuyst, L. 2006. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol., 72(6):4431-4435.
  • Nguyen, DT., Nguyen, TH. 2014. Detection on Antioxidant and Cytotoxicity Activities of Exopolysaccharides Isolated in Plant-Originated Lactococcus lactis. Biomed. Pharmacol. J., 7(1):33-38.
  • Nguyen, MR.,Osipo, C., Knight, KL. 2020. Abstract 6101: Exopolysaccharide secreted by Bacillus subtilis alters breast cancer cell growth and stemness. Cancer Res., 80(16_Supplement): 6101.
  • Nie, SP., Xie, MY. 2011. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids. 25(2):144-149.
  • Payne, DE., Boles, BR. 2016. Emerging interactions between matrix components during biofilm development. Curr. Genet., 62(1):137-41.
  • Ramamoorthy, S., Gnanakan, A., Lakshmana, S., Meivelu, M., Jeganathan, A. 2018. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.Carbohydr. Polym., 190:113-120.
  • Roberson, EB., Firestone, MK. 1992. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl. Environ. Microbiol., 58(4):1284-1291.
  • Roca, C., Alves, VD., Freitas, F., Reis, MA. 2015. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front. Microbiol., 6:288.
  • Shaw, T., Winston, M., Rupp, CJ., Klapper, I., Stoodley, P. 2004. Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett., 93(9):098102.
  • Solmaz, KB., Ozcan, Y., Mercan Dogan, N., Bozkaya, O., Ide, S. 2018. Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10. Environments. 5(6):63.
  • Tahmourespour, A., Ahmadi, A., Fesharaki, M. 2020. The anti-tumor activity of exopolysaccharides from Pseudomonas strains against HT-29 colorectal cancer cell line. Int. J. Biol. Macromol., 149:1072-1076.
  • Tuinier, R., Zoon, P., Olieman, C., Stuart, MA., Fleer, GJ., de Kruif, CG. 1999. Isolation and physical characterization of an exocellular polysaccharide. Biopolymers. 49(1):1-9.
  • Vinothkanna, A., Sathiyanarayanan, G., Balaji, P., Mathivanan, K., Pugazhendhi, A., Ma, Y., Sekar, S., Thirumurugan, R. 2021. Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from Indian polyherbal fermented traditional medicine. Int. J. Biol. Macromol., 174:144-152.
  • Wollowski, I., Rechkemmer, G., Pool-Zobel, BL. 2001. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr., 73(2 Suppl):451S-455S.
  • Wong, YN., Chang, WC., Clapper, M. Engstrom, PF. 2007. Chemoprevention of colorectal cancer.In:Saltz LB,Markman M,editors.Colorectal Cancer: Evidence-Based Chemotherapy Strategies. Humana Press. Inc.; Totowa NJ,pp.33–49.
  • Xiao, R., Zheng, Y. 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv., 34(7):1225-1244.
  • Zhang, JY., Tao, LY., Liang, YJ., Chen, LM., Mi, YJ., Zheng, LS., Wang, F., She, ZG., Lin, YC., To, KK., Fu, LW. 2010. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar. Drugs., 8(4):1469-1481.
  • Zhang, M., Tian, X., Wang, Y., Wang, D., Li, W., Chen, L., Pan, W., Mehmood, S., Chen, Y. 2018. Immunomodulating activity of the polysaccharide TLH-3 from Tricholomalobayense in RAW264.7 macrophages. Int. J. Biol. Macromol., 107(Pt B):2679-2685.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Volkan Kuzucu 0000-0002-6815-2102

Nazime Dogan 0000-0001-8590-8381

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kuzucu, V., & Dogan, N. (2023). Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler. Karaelmas Fen Ve Mühendislik Dergisi, 13(1), 217-223. https://doi.org/10.7212/karaelmasfen.1127313
AMA Kuzucu V, Dogan N. Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2023;13(1):217-223. doi:10.7212/karaelmasfen.1127313
Chicago Kuzucu, Volkan, ve Nazime Dogan. “Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler”. Karaelmas Fen Ve Mühendislik Dergisi 13, sy. 1 (Haziran 2023): 217-23. https://doi.org/10.7212/karaelmasfen.1127313.
EndNote Kuzucu V, Dogan N (01 Haziran 2023) Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler. Karaelmas Fen ve Mühendislik Dergisi 13 1 217–223.
IEEE V. Kuzucu ve N. Dogan, “Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler”, Karaelmas Fen ve Mühendislik Dergisi, c. 13, sy. 1, ss. 217–223, 2023, doi: 10.7212/karaelmasfen.1127313.
ISNAD Kuzucu, Volkan - Dogan, Nazime. “Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler”. Karaelmas Fen ve Mühendislik Dergisi 13/1 (Haziran 2023), 217-223. https://doi.org/10.7212/karaelmasfen.1127313.
JAMA Kuzucu V, Dogan N. Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:217–223.
MLA Kuzucu, Volkan ve Nazime Dogan. “Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler”. Karaelmas Fen Ve Mühendislik Dergisi, c. 13, sy. 1, 2023, ss. 217-23, doi:10.7212/karaelmasfen.1127313.
Vancouver Kuzucu V, Dogan N. Antikanser Etkili Doğal Bir Bileşik: Bakteriyel Ekzopolisakkaritler. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(1):217-23.