Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Engineering Properties of Cement-Based Mortars Produced with Recycled Geopolymer Aggregates

Yıl 2023, Cilt: 13 Sayı: 2, 235 - 247, 29.12.2023

Öz

The use of recycled aggregate obtained from construction waste has a very important place instead of the natural aggregate used at high rates in the production of building materials. While the recycling of Portland cement-based materials as recycled aggregates has been widely investigated, the reuse of geopolymers has not been sufficiently focused. Within the scope of this study, it is aimed to reuse the waste states of geopolymer composites, which were produced by disabling the use of cement. 12 different cement-based mortar mixtures were produced by using recycled geopolymer aggregates (RA) in 3 different ratios as 0%, 50% and 100% and basalt fiber at 0%, 0.2%, 0.4% and 0.6% ratios. It was aimed to determine the fresh properties of the produced mortar mixtures by spreading diameter and unit weight tests, and to determine the hardened properties by compressive strength, flexural strength, water absorption and capillary water absorption tests. While the recycled geopolymer aggregate decreased the unit weight values, it caused a significant increase in the water absorption values. The use of basalt fiber above 0.4% for all blends caused a decrease in compressive strength values. The highest compressive strength value was obtained for the 0.2% basalt fiber content in the sample without recycled aggregate replacement. While the flexural strength values of the control mixtures increased depending on the increase in the fiber content, the highest flexural strength value was reached with the basalt fiber ratio of 0.2% for the mortars containing RA.

Kaynakça

  • Akbarnezhad, A., Huan, M., Mesgari, S., Castel, A. 2015. Recycling of geopolymer concrete. Constr. Build. Mater., 101, pp. 152-158.
  • ASTM C1437, 2015. Standard test method for flow of hydraulic cement mortar, 10.1520/C1437-15.
  • ASTM C33/C33M, 2018. Standard specification for concrete aggregates.
  • ASTM, C109/109M, 2016. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Annual Book of ASTM Standards, 4.
  • ASTM, C1585, 2013. Standard test method for measurement of rate of absorption of water by Hydraulic-, ASTM Int, 4-9.
  • ASTM, C348, 2010. Standard test method for flexural strength of concrete (using simple beam with third-point loading). In American Society for Testing and Materials, 100: 19428-2959.
  • ASTM, C642, 2013. Standard test method for density, absorption, and voids in hardened concrete. ASTM International, West Conshohocken, PA, 2013.
  • Bairagi, NK., Ravande, K., Pareek, VK. 1993. Behaviour of concrete with different proportions of natural and RAs. Resour. Conserv. Recycl., 9 (1–2): 09–126.
  • Banthia, N., Chokri, K., Ohama, Y., Mindess, S. 1994. Fiberreinforced cement based composites under tensile impact. Advanced Cement Based Materials, 1(3), 131-141.
  • Banthia, N., Majdzadeh, F., Wu, J., Bindiganavile, V. 2014. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 48, 91-97.
  • Bentur, A., Mindess, S. 2006. Fibre reinforced cementitious composites. Crc Press.
  • Bilgen, G. 2020. Geri dönüştürülmüş beton agregasının düşük plastisiteli bir kilin mekanik özelliklerine etkisi. Journal of the Institute of Science and Technology, 10(3), 1714-1719.
  • Bilgen, G., Altuntas, O. F. 2023. Sustainable re-use of waste glass, cement and lime treated dredged material as pavement material. Case Studies in Construction Materials, 18, e01815.
  • Çakır, O. 2014. Experimental analysis of properties of recycled coarse aggregate (rca) concrete with mineral additives. Constr. Build. Mater., 68, 17–25.
  • Çavdar, A. 2014. Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering, 58, 463-472.
  • Das, SK., Mustakim, SM., Adesina, A., Mishra, J., Alomayri, TS., Assaedi, HS., Kaze, CR. 2020. Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. Journal of Building Engineering, 32, 101780.
  • Davidovits, J. 1994. Properties of geopolymer cements, in: First international conference on alkaline cements and concretes. KIEV, Ukraine, pp. 131–149.
  • De Azevedo, AR., Costa, AM., Cecchin, D., Pereira, CR., Marvila, MT., Adesina, A. 2022. Adesina, economic potential comparative of reusing different industrial solid wastes in cementitious composites: a case study in Brazil. Environment. Development and Sustainability, pp. 1–24.
  • Gharzouni, A., Vidal, L., Essaidi, N., Joussein, E., Rossignol, S. 2016. Recycling of geopolymer waste: Influence on geopolymer formation and mechanical properties. Materials and Design, 94, 221-229.
  • Gómez-Soberón, JM. 2002. Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study. Cem. Concr. Res., 32 (8), 1301–1311.
  • Grdic, ZJ., Curcic, GAT., Ristic, NS., Despotovic, IM. 2012. Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Construction and Building Materials, 27(1), 305-312.
  • Hansen, TC., Narud, H. 1983. Henrik, strength of recycled concrete made from crushed concrete coarse aggregate. Concr. Int., 5 (1), 79–83.
  • Hardjito, D., Wallah, SE., Sumajouw, DM., Rangan, BV. 2004. On The development of fly ash-based geopolymer concrete. ACI Mater. J., 101 (6), 467–472.
  • Islam, R., Nazifa, TH., Yuniarto, A., Uddin, AS., Salmiati, S., Shahid, S. 2019. An empirical study of construction and demolition waste generation and İmplication of Recycling. Waste Manag., 95, 10–21.
  • Iucolano, F., Liguori, B., Caputo, D., Colangelo, F., Cioffi, R. 2013. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Materials and Design, 52, 916-922.
  • Katz, A. 2003. Properties of concrete made with ra from partially hydrated old concrete. Cem. Concr. Res., 33, 703–711.
  • Kaya, M. 2021. Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO 2 katkısının dayanım özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 640-647.
  • Kaya, M. 2022. Effect of steel fiber additive on high temperature resistance in geopolymer mortars. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 1949-1967.
  • Koksal, F., Kocabeyoglu, ET., Gencel, O., Benli, A. 2021. The effects of high temperature and cooling regimes on the mechanical and durability properties of basalt fiber reinforced mortars with silica fume. Cement and Concrete Composites, 121, 104107.
  • Liu, X., Jiang, J., Zhang, H., Li, M., Wu, Y., Guo, L., ..., Zhang, Z. 2020. Thermal stability and microstructure of metakaolinbased geopolymer blended with rice husk ash. Applied Clay Science, 196, 105769.
  • Luga, E., Atis, CD. 2018. Optimization of heat cured fy ash/slag blend geopolymer mortars designed by “Combined Design” method: Part 1. Construction and Building Materials, 178, 393-404.
  • Ma, JX., Zhang, M., Zhao, G. 2013. Experimental research on basalt fiber reinforced cementitious composites. In Applied mechanics and materials, Vol. 253, pp. 533-536.
  • Majhi, RK., Nayak, AN., Mukharjee, BB. 2018. Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater. 159, 417–430.
  • Mallat, A., Alliche, A. 2011. Mechanical investigation of two fiber-reinforced repair mortars and the repaired system. Construction and building materials, 25(4), 1587-1595.
  • Martín-Morales, M., Zamorano, M., Ruiz-Moyano, A., Valverde-Espinosa, I. 2011.Characterization of ras construction and demolition waste for concrete production following the spanish structural concrete code ehe-08. Constr. Build. Mater., 25 (2): 742–748.
  • Mehrjardi, GT., Azizi, A., Haji-Azizi, A., Asdollafardi, G. 2020. Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transport. Geotech., 23, 100349.
  • Mesgari, S., Akbarnezhad, A., Xiao, J. Z. 2020. Recycled geopolymer aggregates as coarse aggregates for portland cement concrete and geopolymer concrete: effects on mechanical properties. Constr. Build. Mater., 236.
  • Nagataki, S., Gokce, A., Saeki, T., Hisada, M. 2004. Hisada, assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res., 34 (6), 965– 971.
  • Park, J., Tucker, R. 2017. Overcoming barriers to the reuse of construction waste material in australia: a review of the literature. Int. J. Construct. Manag., 17, 228–237.
  • Parviz, S. 2012. Strength and durability of rac containing milled glass as partial replacement for cement. Constr. Build. Mater., 29, 368–377.
  • Rao, SM., Acharya, IP. 2014. Synthesis and characterization of fly ash geopolymer sand. Journal of materials in civil engineering, 26(5), 912-917.
  • Rangan, BV. 2009. Engineering properties of geopolymer concrete. Geopolymers: Structure, Processing, Properties and Industrial Applications, p. 211–226.
  • Ryu, GS., Lee, YB., Koh, KT., Chung, YS. 2013. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater., 47, 409–418.
  • Sadrmomtazi, A., Tahmouresi, B., Saradar, A. 2018. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Construction and Building Materials, 162, 321-333.
  • Sarker, PK., Kelly, S., Yao, Z. 2014. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des., 63, 584– 592.
  • Shariati, M., Ramli Sulong, NH., Sinaei, H., Arabnejad Khanouki, MM., Shafigh, P. 2011. Behavior of channel shear connectors in normal and light weight aggregate concrete (experimental and analytical study). Adv. Mater. Res., 168, 2303–2307.
  • Spadea, S., Farina, I., Carrafiello, A., Fraternali, F. 2015. Recycled nylon fibers as cement mortar reinforcement. Construction and Building Materials, 80, 200-209.
  • Suryawanshi, SR., Singh, B., Bhargava, P. 2015. Characterization of rac, advances in structural engineering. Springer, India, pp. 1813–1822.
  • Tang, Z., Li, W., Ke, G., Zhou, JL., Tam, VW. 2019. Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes. J. Clean. Prod., 218, 810–822.
  • Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, ET., Khorami, MA. 2018. A Review on pavement porous concrete using recycled waste materials. Smart Struct. Syst., 22, 433–440.
  • Zanotti, C., Banthia, N., Plizzari, G. 2014. A study of some factors affecting bond in cementitious fiber reinforced repairs. Cement and Concrete Research, 63, 117-126.
  • Zhang, C., Ali, A., Sun, L. 2021. Investigation on low-cost friction-based isolation systems for masonry building structures: experimental and numerical studies. Eng. Struct., 243, 112645.
  • Zhang, J., Yao, Z., Wang, K., Wang, F., Jiang, H., Liang, M., Wei J., Airey, G. 2020. Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review. Construct. Build. Mater., 121419.
  • Zheng, Y., Zhuo, J., Zhang, P., Ma, M. 2022. Mechanical properties and meso-microscopic mechanism of basalt fiberreinforced recycled aggregate concrete. Journal of Cleaner Production, 370, 133555.
  • Zhou, K., Gong, K., Zhou, Q., Zhao, S., Guo, H., Qian, X. 2020.Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J. Clean. Prod., 257, 120606.
  • Zhu, P., Hua, M., Liu, H., Wang, X., Chen, C. 2020. Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates. Construction and Building Materials, 259, 119849.

Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması

Yıl 2023, Cilt: 13 Sayı: 2, 235 - 247, 29.12.2023

Öz

Yapı malzemeleri üretiminde yüksek oranlarda kullanılan doğal agrega yerine inşaat atıklarından elde edilen geri dönüştürülmüş agrega kullanımı oldukça önemli bir yere sahiptir. Portland çimentosu bazlı malzemelerin geri dönüştürülmüş agregalar olarak geri dönüşümü yaygın olarak araştırılırken, geopolimerlerin yeniden kullanımına çok az odaklanılmıştır. Bu çalışma kapsamında çimento kullanımı devre dışı bırakılarak üretimi gerçekleştirilen geopolimer kompozitlerin atık hallerinin tekrar değerlendirilmesi amaçlanmıştır. %0, %50 ve %100 olmak üzere 3 farklı oranda geri dönüştürülmüş-geopolimer agregası (GDA) ikamesi ve %0, %0.2, %0.4 ve %0.6 oranlarında bazalt lif kullanımı ile 12 farklı çimentolu harç karışımı üretilmiştir. Üretilen harç karışımlarının yayılma çapı ve birim ağırlık deneyleri ile taze özelliklerinin, basınç dayanımı, eğilme dayanımı, su emme ve kılcal su emme deneyleri ile ise sertleşmiş özelliklerinin belirlenmesi hedeflenmiştir. GDA birim ağırlık değerlerini düşürürken, su emme değerlerinde belirgin bir artışa neden olmuştur. Tüm karışımlar için %0.4 oranının üzerinde bazalt lif kullanımı basınç dayanımı değerlerinde düşüşe neden olmuştur. En yüksek basınç dayanım değerine %0.2 bazalt lif oranı için, geri dönüştürülmüş agrega ikamesi yapılmamış numunede ulaşılmıştır. Kontrol karışımları için lif oranının artışına bağlı olarak eğilme dayanım değerleri artış gösterirken GDA içeren harçlarda en yüksek eğilme dayanım değerine %0.2 bazalt lif oranı ile ulaşılmıştır.

Kaynakça

  • Akbarnezhad, A., Huan, M., Mesgari, S., Castel, A. 2015. Recycling of geopolymer concrete. Constr. Build. Mater., 101, pp. 152-158.
  • ASTM C1437, 2015. Standard test method for flow of hydraulic cement mortar, 10.1520/C1437-15.
  • ASTM C33/C33M, 2018. Standard specification for concrete aggregates.
  • ASTM, C109/109M, 2016. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). Annual Book of ASTM Standards, 4.
  • ASTM, C1585, 2013. Standard test method for measurement of rate of absorption of water by Hydraulic-, ASTM Int, 4-9.
  • ASTM, C348, 2010. Standard test method for flexural strength of concrete (using simple beam with third-point loading). In American Society for Testing and Materials, 100: 19428-2959.
  • ASTM, C642, 2013. Standard test method for density, absorption, and voids in hardened concrete. ASTM International, West Conshohocken, PA, 2013.
  • Bairagi, NK., Ravande, K., Pareek, VK. 1993. Behaviour of concrete with different proportions of natural and RAs. Resour. Conserv. Recycl., 9 (1–2): 09–126.
  • Banthia, N., Chokri, K., Ohama, Y., Mindess, S. 1994. Fiberreinforced cement based composites under tensile impact. Advanced Cement Based Materials, 1(3), 131-141.
  • Banthia, N., Majdzadeh, F., Wu, J., Bindiganavile, V. 2014. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites, 48, 91-97.
  • Bentur, A., Mindess, S. 2006. Fibre reinforced cementitious composites. Crc Press.
  • Bilgen, G. 2020. Geri dönüştürülmüş beton agregasının düşük plastisiteli bir kilin mekanik özelliklerine etkisi. Journal of the Institute of Science and Technology, 10(3), 1714-1719.
  • Bilgen, G., Altuntas, O. F. 2023. Sustainable re-use of waste glass, cement and lime treated dredged material as pavement material. Case Studies in Construction Materials, 18, e01815.
  • Çakır, O. 2014. Experimental analysis of properties of recycled coarse aggregate (rca) concrete with mineral additives. Constr. Build. Mater., 68, 17–25.
  • Çavdar, A. 2014. Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering, 58, 463-472.
  • Das, SK., Mustakim, SM., Adesina, A., Mishra, J., Alomayri, TS., Assaedi, HS., Kaze, CR. 2020. Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. Journal of Building Engineering, 32, 101780.
  • Davidovits, J. 1994. Properties of geopolymer cements, in: First international conference on alkaline cements and concretes. KIEV, Ukraine, pp. 131–149.
  • De Azevedo, AR., Costa, AM., Cecchin, D., Pereira, CR., Marvila, MT., Adesina, A. 2022. Adesina, economic potential comparative of reusing different industrial solid wastes in cementitious composites: a case study in Brazil. Environment. Development and Sustainability, pp. 1–24.
  • Gharzouni, A., Vidal, L., Essaidi, N., Joussein, E., Rossignol, S. 2016. Recycling of geopolymer waste: Influence on geopolymer formation and mechanical properties. Materials and Design, 94, 221-229.
  • Gómez-Soberón, JM. 2002. Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study. Cem. Concr. Res., 32 (8), 1301–1311.
  • Grdic, ZJ., Curcic, GAT., Ristic, NS., Despotovic, IM. 2012. Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Construction and Building Materials, 27(1), 305-312.
  • Hansen, TC., Narud, H. 1983. Henrik, strength of recycled concrete made from crushed concrete coarse aggregate. Concr. Int., 5 (1), 79–83.
  • Hardjito, D., Wallah, SE., Sumajouw, DM., Rangan, BV. 2004. On The development of fly ash-based geopolymer concrete. ACI Mater. J., 101 (6), 467–472.
  • Islam, R., Nazifa, TH., Yuniarto, A., Uddin, AS., Salmiati, S., Shahid, S. 2019. An empirical study of construction and demolition waste generation and İmplication of Recycling. Waste Manag., 95, 10–21.
  • Iucolano, F., Liguori, B., Caputo, D., Colangelo, F., Cioffi, R. 2013. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Materials and Design, 52, 916-922.
  • Katz, A. 2003. Properties of concrete made with ra from partially hydrated old concrete. Cem. Concr. Res., 33, 703–711.
  • Kaya, M. 2021. Kaolin esaslı geopolimer harçlarda silis dumanı ve mikro SiO 2 katkısının dayanım özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 640-647.
  • Kaya, M. 2022. Effect of steel fiber additive on high temperature resistance in geopolymer mortars. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 1949-1967.
  • Koksal, F., Kocabeyoglu, ET., Gencel, O., Benli, A. 2021. The effects of high temperature and cooling regimes on the mechanical and durability properties of basalt fiber reinforced mortars with silica fume. Cement and Concrete Composites, 121, 104107.
  • Liu, X., Jiang, J., Zhang, H., Li, M., Wu, Y., Guo, L., ..., Zhang, Z. 2020. Thermal stability and microstructure of metakaolinbased geopolymer blended with rice husk ash. Applied Clay Science, 196, 105769.
  • Luga, E., Atis, CD. 2018. Optimization of heat cured fy ash/slag blend geopolymer mortars designed by “Combined Design” method: Part 1. Construction and Building Materials, 178, 393-404.
  • Ma, JX., Zhang, M., Zhao, G. 2013. Experimental research on basalt fiber reinforced cementitious composites. In Applied mechanics and materials, Vol. 253, pp. 533-536.
  • Majhi, RK., Nayak, AN., Mukharjee, BB. 2018. Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater. 159, 417–430.
  • Mallat, A., Alliche, A. 2011. Mechanical investigation of two fiber-reinforced repair mortars and the repaired system. Construction and building materials, 25(4), 1587-1595.
  • Martín-Morales, M., Zamorano, M., Ruiz-Moyano, A., Valverde-Espinosa, I. 2011.Characterization of ras construction and demolition waste for concrete production following the spanish structural concrete code ehe-08. Constr. Build. Mater., 25 (2): 742–748.
  • Mehrjardi, GT., Azizi, A., Haji-Azizi, A., Asdollafardi, G. 2020. Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transport. Geotech., 23, 100349.
  • Mesgari, S., Akbarnezhad, A., Xiao, J. Z. 2020. Recycled geopolymer aggregates as coarse aggregates for portland cement concrete and geopolymer concrete: effects on mechanical properties. Constr. Build. Mater., 236.
  • Nagataki, S., Gokce, A., Saeki, T., Hisada, M. 2004. Hisada, assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res., 34 (6), 965– 971.
  • Park, J., Tucker, R. 2017. Overcoming barriers to the reuse of construction waste material in australia: a review of the literature. Int. J. Construct. Manag., 17, 228–237.
  • Parviz, S. 2012. Strength and durability of rac containing milled glass as partial replacement for cement. Constr. Build. Mater., 29, 368–377.
  • Rao, SM., Acharya, IP. 2014. Synthesis and characterization of fly ash geopolymer sand. Journal of materials in civil engineering, 26(5), 912-917.
  • Rangan, BV. 2009. Engineering properties of geopolymer concrete. Geopolymers: Structure, Processing, Properties and Industrial Applications, p. 211–226.
  • Ryu, GS., Lee, YB., Koh, KT., Chung, YS. 2013. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater., 47, 409–418.
  • Sadrmomtazi, A., Tahmouresi, B., Saradar, A. 2018. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Construction and Building Materials, 162, 321-333.
  • Sarker, PK., Kelly, S., Yao, Z. 2014. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des., 63, 584– 592.
  • Shariati, M., Ramli Sulong, NH., Sinaei, H., Arabnejad Khanouki, MM., Shafigh, P. 2011. Behavior of channel shear connectors in normal and light weight aggregate concrete (experimental and analytical study). Adv. Mater. Res., 168, 2303–2307.
  • Spadea, S., Farina, I., Carrafiello, A., Fraternali, F. 2015. Recycled nylon fibers as cement mortar reinforcement. Construction and Building Materials, 80, 200-209.
  • Suryawanshi, SR., Singh, B., Bhargava, P. 2015. Characterization of rac, advances in structural engineering. Springer, India, pp. 1813–1822.
  • Tang, Z., Li, W., Ke, G., Zhou, JL., Tam, VW. 2019. Sulfate attack resistance of sustainable concrete incorporating various industrial solid wastes. J. Clean. Prod., 218, 810–822.
  • Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, ET., Khorami, MA. 2018. A Review on pavement porous concrete using recycled waste materials. Smart Struct. Syst., 22, 433–440.
  • Zanotti, C., Banthia, N., Plizzari, G. 2014. A study of some factors affecting bond in cementitious fiber reinforced repairs. Cement and Concrete Research, 63, 117-126.
  • Zhang, C., Ali, A., Sun, L. 2021. Investigation on low-cost friction-based isolation systems for masonry building structures: experimental and numerical studies. Eng. Struct., 243, 112645.
  • Zhang, J., Yao, Z., Wang, K., Wang, F., Jiang, H., Liang, M., Wei J., Airey, G. 2020. Sustainable utilization of bauxite residue (red mud) as a road material in pavements: a critical review. Construct. Build. Mater., 121419.
  • Zheng, Y., Zhuo, J., Zhang, P., Ma, M. 2022. Mechanical properties and meso-microscopic mechanism of basalt fiberreinforced recycled aggregate concrete. Journal of Cleaner Production, 370, 133555.
  • Zhou, K., Gong, K., Zhou, Q., Zhao, S., Guo, H., Qian, X. 2020.Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J. Clean. Prod., 257, 120606.
  • Zhu, P., Hua, M., Liu, H., Wang, X., Chen, C. 2020. Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates. Construction and Building Materials, 259, 119849.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Şevin Ekmen 0000-0002-2577-696X

Zeynep Algın 0000-0001-7004-8403

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Ekmen, Ş., & Algın, Z. (2023). Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması. Karaelmas Fen Ve Mühendislik Dergisi, 13(2), 235-247. https://doi.org/10.7212/karaelmasfen.1260741
AMA Ekmen Ş, Algın Z. Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması. Karaelmas Fen ve Mühendislik Dergisi. Aralık 2023;13(2):235-247. doi:10.7212/karaelmasfen.1260741
Chicago Ekmen, Şevin, ve Zeynep Algın. “Geri Dönüştürülmüş Geopolimer Agregaları Ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması”. Karaelmas Fen Ve Mühendislik Dergisi 13, sy. 2 (Aralık 2023): 235-47. https://doi.org/10.7212/karaelmasfen.1260741.
EndNote Ekmen Ş, Algın Z (01 Aralık 2023) Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması. Karaelmas Fen ve Mühendislik Dergisi 13 2 235–247.
IEEE Ş. Ekmen ve Z. Algın, “Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması”, Karaelmas Fen ve Mühendislik Dergisi, c. 13, sy. 2, ss. 235–247, 2023, doi: 10.7212/karaelmasfen.1260741.
ISNAD Ekmen, Şevin - Algın, Zeynep. “Geri Dönüştürülmüş Geopolimer Agregaları Ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması”. Karaelmas Fen ve Mühendislik Dergisi 13/2 (Aralık 2023), 235-247. https://doi.org/10.7212/karaelmasfen.1260741.
JAMA Ekmen Ş, Algın Z. Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:235–247.
MLA Ekmen, Şevin ve Zeynep Algın. “Geri Dönüştürülmüş Geopolimer Agregaları Ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması”. Karaelmas Fen Ve Mühendislik Dergisi, c. 13, sy. 2, 2023, ss. 235-47, doi:10.7212/karaelmasfen.1260741.
Vancouver Ekmen Ş, Algın Z. Geri Dönüştürülmüş Geopolimer Agregaları ile Üretilen Çimento Esaslı Harçların Mühendislik Özelliklerinin Araştırılması. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(2):235-47.