Research Article
BibTex RIS Cite

Investigation of the Shear Strength of Kaolin Clay Reinforced with PPF Fibers and PET Flakes

Year 2023, Volume: 13 Issue: 2, 266 - 275, 29.12.2023

Abstract

The shear resistance of the soil plays an important role in the design of the foundation of a structure to be built. In civil engineering, existing soils are expected to be capable of bearing structural loads. However, sometimes weak soils that cannot carry the load of the building can be encountered. Therefore, it is necessary to improve the engineering properties of such soils.
In this study, the strength of kaolin, a clay with low plasticity, was investigated in the laboratory using Polypropylene (PPF) fibers and Polyethylene Terephthalate (PET) flakes. While PPF fibers were preferred due to their low cost and durability, PET flakes were preferred because they are both economical and reduce the volume of solid waste that is increasing day by day. For this purpose, by adding 0%, 0.5%, 1.0%, 1.5%, 2.0% PPF fibers and PET flakes by weight to kaolin clay, optimum water content (wopt) and max. dry unit volume weights (γkmax) were determined. Uniaxial compression tests were carried out on the samples prepared in Proctor density. As a result of the experiments, it was determined that there was a significant increase in the strength of the reinforced kaolin clay. According to the test results performed on the samples prepared with optimum water content and Proctor density, the unconfined compressive strength of kaolin clay with 2.0% PPF increased by 116% compared to the pure kaolin clay samples. On the other hand, unconfined compressive strength increased by 36% in kaolin clay improved with PET additive at the same rate.

References

  • Afşar, E., Bilgen, G. (2021). Kuyu temel maliyetinin deprem riskine göre değişimi. Tasarım Mimarlık ve Mühendislik Dergisi, 1(3), 181-188.
  • Akan, R., Keskin, S. N. (2018). Kompaksiyon Yönteminin Kohezyonlu Zeminlerin Serbest Basınç Mukavemetine Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 6(2), 250-257.
  • Aksoy, H. S., Edan, O. M. E., Taher, N. (2021). Shear Strength Parameters of Sand Reinforced with Polypropylene Fiber. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(4), 900-907.
  • Al-Refeai, T. O. (1991). Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotextiles and Geomembranes, 10(4), 319-333.
  • ASTM, D2166-06. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshoshocken, PA, United States.
  • ASTM D698-00. (2000). Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). Annual Book of ASTM Standards, 4.
  • Bilgen, G. (2020a). Geri Dönüştürülmüş Beton Agregasının Düşük Plastisiteli Bir Kilin Mekanik Özelliklerine Etkisi. Journal of the Institute of Science and Technology, 10(3), 1714- 1719.
  • Bilgen, G. (2020b). Utilization of powdered glass in lime-stabilized clayey soil with sea water Environmental Earth Sciences, 79 (19), 472.
  • Bilgen, G., Altuntas, O. F. (2023). Sustainable re-use of waste glass, cement and lime treated dredged material as pavement material. Case Studies in Construction Materials, 18, e01815.
  • Botero, E., Ossa, A., Sherwell, G., Ovando-Shelley, E. (2015). Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363-369.
  • Calvo, C. F., (2006). Estudio experimental de refuerzo de suelos con fibras sintéticas.
  • Calvo, C. F., Santamaría, J. M. M., Mayoral, J. M. T. (2007). Refuerzo de suelos con fibras sintéticas. Rutas: Revista de la Asociación Técnica de Carreteras, (121), 13-24.
  • Castilho, T. W., Rodrigues, R. A., Lodi, P. C. (2021). Use of Recycled Polyethylene Terephthalate Strips in Soil Improvement. Geotechnical and Geological Engineering, 39(8), 5943-5955.
  • Dos Santos, A. S., Consoli, N. C., Baudet, B. A. (2010). The mechanics of fibre-reinforced sand. Geotechnique, 60(10), 791- 799.
  • Fathi, H., Jamshidi Chenari, R., Vafaeian, M. (2020). Shaking table study on PET strips-sand mixtures using laminar box modelling. Geotechnical and Geological Engineering, 38(1), 683- 694.
  • Festugato, L., Menger, E., Benezra, F., Kipper, E. A., Consoli, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77-82. https://www.eko-pet.com.tr/uploads/ekoflake_f-01_product_ standarts.pdf
  • Li, J., Ding, D., (2002). Nonlinear elastic behavior of fiberreinforced soil under cyclic loading. Soil dynamics and earthquake engineering, 22(9-12), 977-983.
  • Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014). Effect of discrete fibre reinforcement on soil tensile strength. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133-137.
  • Liu, Y., Wang, L., Cao, K., Sun, L. (2021). Review on the Durability of Polypropylene Fibre-Reinforced Concrete. Advances in Civil Engineering, 2021.
  • Louzada, N. D. S. L., Malko, J. A. C., Casagrande, M. D. T. (2019). Behavior of clayey soil reinforced with polyethylene terephthalate. Journal of Materials in Civil Engineering, 31(10), 04019218.
  • Maher, M. H. (1988). Static and dynamic force response of sands reinforced with discrete, randomly distributed fibers. University of Michigan.
  • Maher, M. H., Gray, D. H. (1990). Static response of sands reinforced with randomly distributed fibers. Journal of geotechnical engineering, 116(11), 1661-1677.
  • Maliakal, T., Thiyyakkandi, S. (2013). Influence of randomly distributed coir fibers on shear strength of clay. Geotechnical and Geological Engineering, 31(2), 425-433.
  • NAPCOR (2016). (National Assocation for PET Container Resources). n.d. Accessed.
  • Onyelowe, K. C., Bui Van, D., Ubachukwu, O., Ezugwu, C., Salahudeen, B., Nguyen Van, M., Ugorji, B. (2019). Recycling and reuse of solid wastes; a hub for ecofriendly, ecoefficient and sustainable soil, concrete, wastewater and pavement reengineering. International Journal of Low-Carbon Technologies, 14(3), 440-451.
  • Özpolat, A. (2020). Killi zeminlerde kazıklı radye temellerin düşey yükler etkisi altında davranışının model deneyleri ile incelenmesi.
  • Peddaiah, S., Burman, A., Sreedeep, S. (2018). Experimental study on effect of waste plastic bottle strips in soil improvement. Geotechnical and Geological Engineering, 36(5), 2907- 2920.
  • Prabakar, J., Sridhar, R. S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and Building materials, 16(2), 123-131.
  • Ranjan, G., Vasan, R. M., Charan, H. D. (1996). Probabilistic analysis of randomly distributed fiber-reinforced soil. Journal of geotechnical engineering, 122(6), 419-426.
  • Romão, W., Spinacé, M. A., Paoli, M. A. D. (2009). Poli (tereftalato de etileno), PET: uma revisão sobre os processos de síntese, mecanismos de degradação e sua reciclagem. Polímeros, 19, 121-132.
  • Santoni, R. L., Tingle, J. S., Webster, S. L. (2001). Engineering properties of sand-fiber mixtures for road construction. Journal of geotechnical and geoenvironmental engineering, 127(3), 258- 268.
  • Satı, Y. (2016). Sıkıştırılmış ince daneli zeminlerin kayma mukavemetinin drenajlı koşullarda incelenmesi. (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Tang, C., Shi, B., Gao, W., Chen, F., Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
  • Trindade, T. P., Iasbik, I., de Lima, D. C., Minette, E., de Carvalho Silva, C. H., de Carvalho, C. A. B., Machado, C. C. (2006). Estudos laboratoriais do comportamento de um solo residual arenoso reforçado com fibras de polipropileno, visando à aplicação em Estradas Florestais. Revista Árvore, 30(2), 215-221.
  • Unnikrishnan, N., Rajagopal, K., Krishnaswamy, N. R. (2002). Behaviour of reinforced clay under monotonic and cyclic loading. Geotextiles and Geomembranes, 20(2), 117-133.
  • Waldron, L. J. (1977). The shear resistance of root‐permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41(5), 843-849.
  • Wang, Y. (1999). Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polymer-Plastics Technology and Engineering, 38(3), 533-546.
  • Wu, T. H. (1976). Investigation on landslides on Prince of Wales Island. Alaska Geotech. Rpt. No 5, Dpt. Of Civil Eng., Ohio State Univ., Columbus, USA.

PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi

Year 2023, Volume: 13 Issue: 2, 266 - 275, 29.12.2023

Abstract

Zeminin kayma mukavemeti, inşa edilecek bir yapının temelinin tasarımında önemli bir rol oynar. İnşaat mühendisleri mevcut zeminlerin, yapı yükünü taşıyabilecek durumda olmasını beklerler. Ancak zaman zaman yapı yükünü taşıyamayan zayıf zeminler ile karşılaşılmaktadır. Bu nedenle bu tür zeminlerin mühendislik özelliklerinin iyileştirilmesi gerekmektedir.
Bu çalışma kapsamında, düşük plastisiteli bir kil olan kaolin kilinin mukavemeti, Polipropilen Elyaf (PPF) lifleri ve Polietilen Tereftalat (PET) talaşları kullanılarak laboratuvar ortamında arttırılmaya çalışılmıştır. PPF lifleri düşük maliyeti ve dayanıklılığından dolayı, PET talaşları ise hem ekonomik olması hem de gün geçtikçe artan katı atık hacminin azaltılması amacıyla tercih edilmiştir. Bu amaçla kaolin kiline ağırlıkça %0, %0.5, %1.0, %1.5 ve %2.0 oranlarında PPF lifleri ve PET talaşları ilave edilerek karışımlar oluşturulmuş ve Proctor deneyleri yardımıyla optimum su muhtevaları (wopt) ve maksimum kuru birim hacim ağırlıkları (γkmaks) belirlenmiştir. Proctor sıkılığında hazırlanmış numuneler üzerinde serbest basınç deneyleri yapılmıştır. Yapılan deneyler sonucunda katkılı kaolin kilinin mukavemetinde dikkate değer artışlar olduğu tespit edilmiştir. Optimum su muhtevasında ve Proctor sıkılığında hazırlanan numuneler üzerinde yapılan deney sonuçlarına göre %2.0 PPF eklenen kaolin kilinin serbest basınç mukavemeti, katkısız kaolin kili numunelere göre %116 oranında artış göstermiştir. Aynı oranda PET katkısı ile iyileştirilen kaolin kilinde ise serbest basınç mukavemeti %36 artış göstermiştir.

References

  • Afşar, E., Bilgen, G. (2021). Kuyu temel maliyetinin deprem riskine göre değişimi. Tasarım Mimarlık ve Mühendislik Dergisi, 1(3), 181-188.
  • Akan, R., Keskin, S. N. (2018). Kompaksiyon Yönteminin Kohezyonlu Zeminlerin Serbest Basınç Mukavemetine Etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 6(2), 250-257.
  • Aksoy, H. S., Edan, O. M. E., Taher, N. (2021). Shear Strength Parameters of Sand Reinforced with Polypropylene Fiber. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(4), 900-907.
  • Al-Refeai, T. O. (1991). Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotextiles and Geomembranes, 10(4), 319-333.
  • ASTM, D2166-06. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshoshocken, PA, United States.
  • ASTM D698-00. (2000). Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). Annual Book of ASTM Standards, 4.
  • Bilgen, G. (2020a). Geri Dönüştürülmüş Beton Agregasının Düşük Plastisiteli Bir Kilin Mekanik Özelliklerine Etkisi. Journal of the Institute of Science and Technology, 10(3), 1714- 1719.
  • Bilgen, G. (2020b). Utilization of powdered glass in lime-stabilized clayey soil with sea water Environmental Earth Sciences, 79 (19), 472.
  • Bilgen, G., Altuntas, O. F. (2023). Sustainable re-use of waste glass, cement and lime treated dredged material as pavement material. Case Studies in Construction Materials, 18, e01815.
  • Botero, E., Ossa, A., Sherwell, G., Ovando-Shelley, E. (2015). Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363-369.
  • Calvo, C. F., (2006). Estudio experimental de refuerzo de suelos con fibras sintéticas.
  • Calvo, C. F., Santamaría, J. M. M., Mayoral, J. M. T. (2007). Refuerzo de suelos con fibras sintéticas. Rutas: Revista de la Asociación Técnica de Carreteras, (121), 13-24.
  • Castilho, T. W., Rodrigues, R. A., Lodi, P. C. (2021). Use of Recycled Polyethylene Terephthalate Strips in Soil Improvement. Geotechnical and Geological Engineering, 39(8), 5943-5955.
  • Dos Santos, A. S., Consoli, N. C., Baudet, B. A. (2010). The mechanics of fibre-reinforced sand. Geotechnique, 60(10), 791- 799.
  • Fathi, H., Jamshidi Chenari, R., Vafaeian, M. (2020). Shaking table study on PET strips-sand mixtures using laminar box modelling. Geotechnical and Geological Engineering, 38(1), 683- 694.
  • Festugato, L., Menger, E., Benezra, F., Kipper, E. A., Consoli, N. C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77-82. https://www.eko-pet.com.tr/uploads/ekoflake_f-01_product_ standarts.pdf
  • Li, J., Ding, D., (2002). Nonlinear elastic behavior of fiberreinforced soil under cyclic loading. Soil dynamics and earthquake engineering, 22(9-12), 977-983.
  • Li, J., Tang, C., Wang, D., Pei, X., Shi, B. (2014). Effect of discrete fibre reinforcement on soil tensile strength. Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 133-137.
  • Liu, Y., Wang, L., Cao, K., Sun, L. (2021). Review on the Durability of Polypropylene Fibre-Reinforced Concrete. Advances in Civil Engineering, 2021.
  • Louzada, N. D. S. L., Malko, J. A. C., Casagrande, M. D. T. (2019). Behavior of clayey soil reinforced with polyethylene terephthalate. Journal of Materials in Civil Engineering, 31(10), 04019218.
  • Maher, M. H. (1988). Static and dynamic force response of sands reinforced with discrete, randomly distributed fibers. University of Michigan.
  • Maher, M. H., Gray, D. H. (1990). Static response of sands reinforced with randomly distributed fibers. Journal of geotechnical engineering, 116(11), 1661-1677.
  • Maliakal, T., Thiyyakkandi, S. (2013). Influence of randomly distributed coir fibers on shear strength of clay. Geotechnical and Geological Engineering, 31(2), 425-433.
  • NAPCOR (2016). (National Assocation for PET Container Resources). n.d. Accessed.
  • Onyelowe, K. C., Bui Van, D., Ubachukwu, O., Ezugwu, C., Salahudeen, B., Nguyen Van, M., Ugorji, B. (2019). Recycling and reuse of solid wastes; a hub for ecofriendly, ecoefficient and sustainable soil, concrete, wastewater and pavement reengineering. International Journal of Low-Carbon Technologies, 14(3), 440-451.
  • Özpolat, A. (2020). Killi zeminlerde kazıklı radye temellerin düşey yükler etkisi altında davranışının model deneyleri ile incelenmesi.
  • Peddaiah, S., Burman, A., Sreedeep, S. (2018). Experimental study on effect of waste plastic bottle strips in soil improvement. Geotechnical and Geological Engineering, 36(5), 2907- 2920.
  • Prabakar, J., Sridhar, R. S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and Building materials, 16(2), 123-131.
  • Ranjan, G., Vasan, R. M., Charan, H. D. (1996). Probabilistic analysis of randomly distributed fiber-reinforced soil. Journal of geotechnical engineering, 122(6), 419-426.
  • Romão, W., Spinacé, M. A., Paoli, M. A. D. (2009). Poli (tereftalato de etileno), PET: uma revisão sobre os processos de síntese, mecanismos de degradação e sua reciclagem. Polímeros, 19, 121-132.
  • Santoni, R. L., Tingle, J. S., Webster, S. L. (2001). Engineering properties of sand-fiber mixtures for road construction. Journal of geotechnical and geoenvironmental engineering, 127(3), 258- 268.
  • Satı, Y. (2016). Sıkıştırılmış ince daneli zeminlerin kayma mukavemetinin drenajlı koşullarda incelenmesi. (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Tang, C., Shi, B., Gao, W., Chen, F., Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
  • Trindade, T. P., Iasbik, I., de Lima, D. C., Minette, E., de Carvalho Silva, C. H., de Carvalho, C. A. B., Machado, C. C. (2006). Estudos laboratoriais do comportamento de um solo residual arenoso reforçado com fibras de polipropileno, visando à aplicação em Estradas Florestais. Revista Árvore, 30(2), 215-221.
  • Unnikrishnan, N., Rajagopal, K., Krishnaswamy, N. R. (2002). Behaviour of reinforced clay under monotonic and cyclic loading. Geotextiles and Geomembranes, 20(2), 117-133.
  • Waldron, L. J. (1977). The shear resistance of root‐permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41(5), 843-849.
  • Wang, Y. (1999). Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polymer-Plastics Technology and Engineering, 38(3), 533-546.
  • Wu, T. H. (1976). Investigation on landslides on Prince of Wales Island. Alaska Geotech. Rpt. No 5, Dpt. Of Civil Eng., Ohio State Univ., Columbus, USA.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Research Articles
Authors

Hüseyin Suha Aksoy 0000-0003-0564-457X

Atakan Yıldırım 0009-0008-6713-0877

Publication Date December 29, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Aksoy, H. S., & Yıldırım, A. (2023). PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi. Karaelmas Fen Ve Mühendislik Dergisi, 13(2), 266-275. https://doi.org/10.7212/karaelmasfen.1319151
AMA Aksoy HS, Yıldırım A. PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. December 2023;13(2):266-275. doi:10.7212/karaelmasfen.1319151
Chicago Aksoy, Hüseyin Suha, and Atakan Yıldırım. “PPF Lifi Ve PET Talaşı Ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi 13, no. 2 (December 2023): 266-75. https://doi.org/10.7212/karaelmasfen.1319151.
EndNote Aksoy HS, Yıldırım A (December 1, 2023) PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi 13 2 266–275.
IEEE H. S. Aksoy and A. Yıldırım, “PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 13, no. 2, pp. 266–275, 2023, doi: 10.7212/karaelmasfen.1319151.
ISNAD Aksoy, Hüseyin Suha - Yıldırım, Atakan. “PPF Lifi Ve PET Talaşı Ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi”. Karaelmas Fen ve Mühendislik Dergisi 13/2 (December 2023), 266-275. https://doi.org/10.7212/karaelmasfen.1319151.
JAMA Aksoy HS, Yıldırım A. PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2023;13:266–275.
MLA Aksoy, Hüseyin Suha and Atakan Yıldırım. “PPF Lifi Ve PET Talaşı Ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 13, no. 2, 2023, pp. 266-75, doi:10.7212/karaelmasfen.1319151.
Vancouver Aksoy HS, Yıldırım A. PPF Lifi ve PET Talaşı ile Güçlendirilmiş Kaolin Kilinin Kayma Mukavemetinin İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2023;13(2):266-75.