On Generalized Commutative Quaternions with Generalized Tetranacci Number Components
Yıl 2023,
Cilt: 13 Sayı: 2, 309 - 315, 29.12.2023
Özge Arıbaş
,
Mustafa Yıldız
Öz
In this article, generalized commutative quaternions with generalized Tetranacci number components were introduced and studied. Then, we presented some algebraic properties of these quaternions, such as a Binet-like formula and the summation formula. Furthermore, the matrix representation of these generalized commutative quaternions was given.
Etik Beyan
The authors declare that there is no conflict of interest.
Destekleyen Kurum
This research received no external funding.
Kaynakça
- Akyiğit, M., Kosal, H. H., Tosun, M. 2014. Fibonacci generalized quaternions. Adv. Appl. Clifford Algebr., 24: 631-641. Doi: 10.1007/s00006-014-0458-0
- Bród, D., Szynal-Liana, A., Włoch, I. 2022. On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. Czechoslov. Math. J., 72: 1239-1248. Doi: 10.21136/ CMJ.2022.0174-22
- Bród, D., Szynal-Liana, A. 2023. Generalized commutative Jacobsthal quaternions and some matrices. Examples and Counterexamples, 3: 100102. Doi: 10.1016/j.exco.2023.100102
- Cerda-Morales, G. 2017. On a generalization for Tribonacci quaternions. Mediterr. J. Math., 14: 239. Doi: 10.1007/s00009- 017-1042-3
- Flaut, C. 2014. A Clifford algebra associated to generalized Fibonacci quaternions. Adv. Differ. Equ., 279. Doi: 10.1186/1687- 1847-2014-279
- Flaut, C., Savin, D. 2015. Quaternion algebras and generalized Fibonacci–Lucas quaternions. Adv. Appl. Clifford Algebr., 25: 853-862. Doi: 10.1007/s00006-015-0542-0
- Flaut, C., Shpakivskyi, V. 2013. On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions. Adv. Appl. Clifford Algebr., 23: 673–688. Doi: 10.1007/s00006-013- 0388-2
- Halici, S., Karataş, A. 2017. On a generalization for Fibonacci quaternions. Chaos, Solitons & Fractals, 98: 178-182. Doi: 10.1016/j.chaos.2017.03.03
- Horadam, A. F. 1963. Complex Fibonacci numbers and Fibonacci quaternions. American Mathematical Monthly, 70: 289-291. Doi: 10.2307/2313129
- Kızılateş, C. 2017. On the Quadra Lucas-Jacobsthal Numbers. Karaelmas Science and Engineering Journal, 7(2): 619-621.
- Kızılateş, C. 2022. On quaternions with incomplete Fibonacci and Lucas numbers components. Util. Math., 110: 263-269.
- Kızılateş, C., Catarino, P., Tuğlu, N. 2019. On the bicomplex generalized Tribonacci quaternions. Mathematics, 7(1): 80. Doi: 10.3390/math7010080
- Kızılateş, C., Kone, T. 2021a. On higher order Fibonacci quaternions. J. Anal. 29: 1071-1082. Doi: 10.1007/s41478-020- 00295-1
- Kızılateş, C., Kone, T. 2021b. On higher order Fibonacci hyper complex numbers. Chaos, Solitons & Fractals, 148, 111044. Doi: 10.1016/j.chaos.2021.111044
- Kızılateş, C., Tuglu, N., Çekim, B. 2017. Binomial transform of quadrapell sequences and quadrapell matrix sequences. J. Sci. Arts, 1(38): 69-80.
- Özkoç, A. 2015. Some algebraic identities on quadra Fibona-Pell integer sequence. Adv. Differ. Equ., 148(2015): 1-10. Doi: 10.1186/s13662-015-0486-7
- Petroudi, S. H. J., Pirouz, M., Ozkoc, A. 2020. On some properties of particular Tetranacci sequences. J. Int. Math. Virtual Inst., 10(2): 361-376. Doi: 10.7251/JIMVI2002361P
- Ramírez, J. L., Sirvent, V. F. 2015. A generalization of the k-bonacci sequence from Riordan arrays. Electron. J. Comb., 22(1), P1.38: 1-20.
- Simsek, Y. 2023. Construction of general forms of ordinary generating functions for more families of numbers and multiple variables polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117, 130: 1-26. Doi: 10.1007/s13398-023- 01464-0
- Soykan, Y. 2020. Bicomplex Tetranacci and Tetranacci-Lucas quaternions. Commun. Math. Appl., 11(1): 95-112. Doi: 10.26713/cma.v11i1.1212
- Swamy, M. N. S. 1973. On generalized Fibonacci quaternions, Fibonacci Q., 11(5): 547-549.
- Szynal-Liana, A., Włoch, I. 2022. Generalized commutative quaternions of the Fibonacci type. Bol. Soc. Mat. Mex. 28: 1. Doi: 10.1007/s40590-021-00386-4
- Szynal-Liana, A., Włoch, I., Liana, M. 2023. Generalized commutative quaternion polynomials of the Fibonacci type. Ann. Univ. Mariae Curie-Skłodowska Lub.-Pol., A- Mathematica, 76(2): 33-44. Doi: 10.17951/a.2022.76.2.33-44
- Taşcı, D. 2009. On Quadrapell numbers and Quadrapell polynomials. Hacet. J. Math. Stat., 38(3): 265-275.
- Taşcı, D., Acar, H. 2017. Gaussian Tetranacci numbers. Commun. Math. Appl., 8(3): 379-386. Doi: 10.26713/cma.v8i3.615
- Waddill, M. E. 1992. The Tetranacci sequence and generalizations. Fibonacci Q., 30(1): 9-20.
- Yeşil Baran, F., Yetiş, T. 2019. On the norms of circulant matrices via generalized Tetranacci numbers. Bilecik Seyh Edebali University Journal of Science, 6(2): 444-454. Doi: 10.35193/ bseufbd.662239
- Yeşil Baran, F. 2021. The eigenvalues of circulant matrices with generalized Tetranacci numbers. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2): 417-423. Doi: 10.17714/gumusfenbil.830575
Genelleştirilmiş Tetranacci Sayı Bileşenleri ile Genelleştirilmiş Komutatif Kuaterniyonlar Üzerine
Yıl 2023,
Cilt: 13 Sayı: 2, 309 - 315, 29.12.2023
Özge Arıbaş
,
Mustafa Yıldız
Öz
Bu çalışmada, genelleştirilmiş Tetranacci sayı bileşenleri ile genelleştirilmiş komutatif kuaterniyonlar tanımlanmış ve incelenmiştir. Bu kuarternionlara ait Binet-benzeri formül ve toplam formülü gibi bazı cebirsel özellikler sunulmuştur. Ayrıca, bu genelleştirilmiş komutatif kuaterniyonların matris temsilcisi verilmiştir.
Kaynakça
- Akyiğit, M., Kosal, H. H., Tosun, M. 2014. Fibonacci generalized quaternions. Adv. Appl. Clifford Algebr., 24: 631-641. Doi: 10.1007/s00006-014-0458-0
- Bród, D., Szynal-Liana, A., Włoch, I. 2022. On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. Czechoslov. Math. J., 72: 1239-1248. Doi: 10.21136/ CMJ.2022.0174-22
- Bród, D., Szynal-Liana, A. 2023. Generalized commutative Jacobsthal quaternions and some matrices. Examples and Counterexamples, 3: 100102. Doi: 10.1016/j.exco.2023.100102
- Cerda-Morales, G. 2017. On a generalization for Tribonacci quaternions. Mediterr. J. Math., 14: 239. Doi: 10.1007/s00009- 017-1042-3
- Flaut, C. 2014. A Clifford algebra associated to generalized Fibonacci quaternions. Adv. Differ. Equ., 279. Doi: 10.1186/1687- 1847-2014-279
- Flaut, C., Savin, D. 2015. Quaternion algebras and generalized Fibonacci–Lucas quaternions. Adv. Appl. Clifford Algebr., 25: 853-862. Doi: 10.1007/s00006-015-0542-0
- Flaut, C., Shpakivskyi, V. 2013. On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions. Adv. Appl. Clifford Algebr., 23: 673–688. Doi: 10.1007/s00006-013- 0388-2
- Halici, S., Karataş, A. 2017. On a generalization for Fibonacci quaternions. Chaos, Solitons & Fractals, 98: 178-182. Doi: 10.1016/j.chaos.2017.03.03
- Horadam, A. F. 1963. Complex Fibonacci numbers and Fibonacci quaternions. American Mathematical Monthly, 70: 289-291. Doi: 10.2307/2313129
- Kızılateş, C. 2017. On the Quadra Lucas-Jacobsthal Numbers. Karaelmas Science and Engineering Journal, 7(2): 619-621.
- Kızılateş, C. 2022. On quaternions with incomplete Fibonacci and Lucas numbers components. Util. Math., 110: 263-269.
- Kızılateş, C., Catarino, P., Tuğlu, N. 2019. On the bicomplex generalized Tribonacci quaternions. Mathematics, 7(1): 80. Doi: 10.3390/math7010080
- Kızılateş, C., Kone, T. 2021a. On higher order Fibonacci quaternions. J. Anal. 29: 1071-1082. Doi: 10.1007/s41478-020- 00295-1
- Kızılateş, C., Kone, T. 2021b. On higher order Fibonacci hyper complex numbers. Chaos, Solitons & Fractals, 148, 111044. Doi: 10.1016/j.chaos.2021.111044
- Kızılateş, C., Tuglu, N., Çekim, B. 2017. Binomial transform of quadrapell sequences and quadrapell matrix sequences. J. Sci. Arts, 1(38): 69-80.
- Özkoç, A. 2015. Some algebraic identities on quadra Fibona-Pell integer sequence. Adv. Differ. Equ., 148(2015): 1-10. Doi: 10.1186/s13662-015-0486-7
- Petroudi, S. H. J., Pirouz, M., Ozkoc, A. 2020. On some properties of particular Tetranacci sequences. J. Int. Math. Virtual Inst., 10(2): 361-376. Doi: 10.7251/JIMVI2002361P
- Ramírez, J. L., Sirvent, V. F. 2015. A generalization of the k-bonacci sequence from Riordan arrays. Electron. J. Comb., 22(1), P1.38: 1-20.
- Simsek, Y. 2023. Construction of general forms of ordinary generating functions for more families of numbers and multiple variables polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117, 130: 1-26. Doi: 10.1007/s13398-023- 01464-0
- Soykan, Y. 2020. Bicomplex Tetranacci and Tetranacci-Lucas quaternions. Commun. Math. Appl., 11(1): 95-112. Doi: 10.26713/cma.v11i1.1212
- Swamy, M. N. S. 1973. On generalized Fibonacci quaternions, Fibonacci Q., 11(5): 547-549.
- Szynal-Liana, A., Włoch, I. 2022. Generalized commutative quaternions of the Fibonacci type. Bol. Soc. Mat. Mex. 28: 1. Doi: 10.1007/s40590-021-00386-4
- Szynal-Liana, A., Włoch, I., Liana, M. 2023. Generalized commutative quaternion polynomials of the Fibonacci type. Ann. Univ. Mariae Curie-Skłodowska Lub.-Pol., A- Mathematica, 76(2): 33-44. Doi: 10.17951/a.2022.76.2.33-44
- Taşcı, D. 2009. On Quadrapell numbers and Quadrapell polynomials. Hacet. J. Math. Stat., 38(3): 265-275.
- Taşcı, D., Acar, H. 2017. Gaussian Tetranacci numbers. Commun. Math. Appl., 8(3): 379-386. Doi: 10.26713/cma.v8i3.615
- Waddill, M. E. 1992. The Tetranacci sequence and generalizations. Fibonacci Q., 30(1): 9-20.
- Yeşil Baran, F., Yetiş, T. 2019. On the norms of circulant matrices via generalized Tetranacci numbers. Bilecik Seyh Edebali University Journal of Science, 6(2): 444-454. Doi: 10.35193/ bseufbd.662239
- Yeşil Baran, F. 2021. The eigenvalues of circulant matrices with generalized Tetranacci numbers. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2): 417-423. Doi: 10.17714/gumusfenbil.830575