Research Article
BibTex RIS Cite

Some Properties of Generalized Jacobsthal-Like Sequences

Year 2024, Volume: 14 Issue: 2, 92 - 96, 23.07.2024

Abstract

In this article, using Jacobsthal and Jacobsthal-Lucas sequences, we define generalized Jacobsthal-Like sequences and investigate their algebraic properties like Binet’s formula, generating functions, Simson formula and summation formula. We also prove some other summation formulas like sum of even and odd indices and alternating sum of generalized Jacobsthal-Like sequences.

Project Number

2

References

  • Benjamin, AT., Quinn, JJ. 1999. Recounting Fibonacci and Lucas identities. The College Mathematics Journal, 30(5), 359-366. https://doi.org/10.1080/07468342.1999.11974086
  • Badshah, VH., Teeth, MS., Dar, MM. 2012. Generalized Fibonacci-like sequence and its properties. International Journal of Contemporary Mathematical Sciences, 7(24), 1155-1164.
  • Gupta, Y., Singh, M., Sikhwal, O. 2014. Generalized Fibonacci-like sequence associated with Fibonacci and Lucas sequences. Turkish Journal of Analysis and Number Theory, 2(6), 233-238. https://doi.org/10.12691/tjant-2-6-9
  • Horadam, AF. 1996. Jacobsthal representation numbers. Fibonacci Quarterly, 34(1), 40-54.
  • Harne, S., Singh, Pal, S. 2014. Generalized Fibonacci-Like sequence and Fibonacci Sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235-241. http://dx.doi.org/10.12988/ijcms.2014.4218
  • Lee, JZ., Lee, JS. 1987. Some Properties of Generalization of the Fibonacci Sequences. The Fibonacci Quarterly, (No. 2), 110-117.
  • Natividad, LR. 2016. Notes on Jacobsthal and Jacobsthal-Like Sequences. International Journal of Mathematics Trends and Technology (IJMTT), 34(2), 115-117. https://doi.org/10.14445/22315373/IJMTT-V34P519
  • Pakapongpun, A. 2020. Identities on the product of Jacobsthal-Like and Jacobsthal-Lucas numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 209-215. DOI: 10.7546/nntdm.2020.26.1.209-215
  • Singh, B., Sikhwal, O., Bhatnagar, S. 2010. Fibonacci-Like Sequence and its properties. International Journal of Contemporary Mathematical Sciences, 5(18), 857-868. DOI: 10.12691/tjant-2-4-1.
  • Singh, M., Sikhwal, O., Gupta, Y. 2014. Identities of generalized Fibonacci-Like Sequence. Turkish Journal of Analysis and Number Theory, 2(5), 170-175. DOI: 10.12691/tjant-2-5-3.
  • Soykan, Y., Göcen, M. (2022). Binomial transform of the generalized third order Jacobsthal sequence. Asian-European Journal of Mathematics, 15(12). https://doi.org/10.1142/S1793557122502242
  • Soykan, Y., Taşdemir, E., Okumuş, İ., Göcen, M. 2018. Gaussian generalized Tribonacci numbers. Journal of Progressive Research in Mathematics, 14(2), 2373-2387.

Genelleştirilmiş Jacobsthal-Benzeri Dizilerin Bazı Özellikleri

Year 2024, Volume: 14 Issue: 2, 92 - 96, 23.07.2024

Abstract

Bu makalede Jacobsthal ve Jacobsthal-Lucas dizilerini kullanarak genelleştirilmiş Jacobsthal-Benzeri dizilerini tanımlayıp Binet formülü, üreten fonksiyonlar, Simson formülü ve toplam formülü gibi cebirsel özelliklerini araştırıyoruz. Ayrıca çift ve tek indekslerin toplamı ve genelleştirilmiş Jacobsthal-Benzeri dizilerinin alterne toplamı gibi diğer toplama formüllerini de kanıtlıyoruz.

Project Number

2

References

  • Benjamin, AT., Quinn, JJ. 1999. Recounting Fibonacci and Lucas identities. The College Mathematics Journal, 30(5), 359-366. https://doi.org/10.1080/07468342.1999.11974086
  • Badshah, VH., Teeth, MS., Dar, MM. 2012. Generalized Fibonacci-like sequence and its properties. International Journal of Contemporary Mathematical Sciences, 7(24), 1155-1164.
  • Gupta, Y., Singh, M., Sikhwal, O. 2014. Generalized Fibonacci-like sequence associated with Fibonacci and Lucas sequences. Turkish Journal of Analysis and Number Theory, 2(6), 233-238. https://doi.org/10.12691/tjant-2-6-9
  • Horadam, AF. 1996. Jacobsthal representation numbers. Fibonacci Quarterly, 34(1), 40-54.
  • Harne, S., Singh, Pal, S. 2014. Generalized Fibonacci-Like sequence and Fibonacci Sequence. International Journal of Contemporary Mathematical Sciences, 9(5), 235-241. http://dx.doi.org/10.12988/ijcms.2014.4218
  • Lee, JZ., Lee, JS. 1987. Some Properties of Generalization of the Fibonacci Sequences. The Fibonacci Quarterly, (No. 2), 110-117.
  • Natividad, LR. 2016. Notes on Jacobsthal and Jacobsthal-Like Sequences. International Journal of Mathematics Trends and Technology (IJMTT), 34(2), 115-117. https://doi.org/10.14445/22315373/IJMTT-V34P519
  • Pakapongpun, A. 2020. Identities on the product of Jacobsthal-Like and Jacobsthal-Lucas numbers. Notes on Number Theory and Discrete Mathematics, 26(1), 209-215. DOI: 10.7546/nntdm.2020.26.1.209-215
  • Singh, B., Sikhwal, O., Bhatnagar, S. 2010. Fibonacci-Like Sequence and its properties. International Journal of Contemporary Mathematical Sciences, 5(18), 857-868. DOI: 10.12691/tjant-2-4-1.
  • Singh, M., Sikhwal, O., Gupta, Y. 2014. Identities of generalized Fibonacci-Like Sequence. Turkish Journal of Analysis and Number Theory, 2(5), 170-175. DOI: 10.12691/tjant-2-5-3.
  • Soykan, Y., Göcen, M. (2022). Binomial transform of the generalized third order Jacobsthal sequence. Asian-European Journal of Mathematics, 15(12). https://doi.org/10.1142/S1793557122502242
  • Soykan, Y., Taşdemir, E., Okumuş, İ., Göcen, M. 2018. Gaussian generalized Tribonacci numbers. Journal of Progressive Research in Mathematics, 14(2), 2373-2387.
There are 12 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Can Murat Dikmen 0000-0002-1837-1139

Kübra Karataş Selam 0000-0002-6490-440X

Project Number 2
Publication Date July 23, 2024
Submission Date February 27, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Dikmen, C. M., & Karataş Selam, K. (2024). Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen Ve Mühendislik Dergisi, 14(2), 92-96. https://doi.org/10.7212/karaelmasfen.1443277
AMA Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. July 2024;14(2):92-96. doi:10.7212/karaelmasfen.1443277
Chicago Dikmen, Can Murat, and Kübra Karataş Selam. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen Ve Mühendislik Dergisi 14, no. 2 (July 2024): 92-96. https://doi.org/10.7212/karaelmasfen.1443277.
EndNote Dikmen CM, Karataş Selam K (July 1, 2024) Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi 14 2 92–96.
IEEE C. M. Dikmen and K. Karataş Selam, “Some Properties of Generalized Jacobsthal-Like Sequences”, Karaelmas Fen ve Mühendislik Dergisi, vol. 14, no. 2, pp. 92–96, 2024, doi: 10.7212/karaelmasfen.1443277.
ISNAD Dikmen, Can Murat - Karataş Selam, Kübra. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen ve Mühendislik Dergisi 14/2 (July 2024), 92-96. https://doi.org/10.7212/karaelmasfen.1443277.
JAMA Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:92–96.
MLA Dikmen, Can Murat and Kübra Karataş Selam. “Some Properties of Generalized Jacobsthal-Like Sequences”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 14, no. 2, 2024, pp. 92-96, doi:10.7212/karaelmasfen.1443277.
Vancouver Dikmen CM, Karataş Selam K. Some Properties of Generalized Jacobsthal-Like Sequences. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(2):92-6.