Araştırma Makalesi
BibTex RIS Kaynak Göster

Edirne’deki Alışveriş Merkezi İçin Hibrit Yenilenebilir Enerji ile Çalışan Elektrikli Araç Şarj İstasyonunun Tekno-Ekonomik Değerlendirmesi

Yıl 2024, Cilt: 14 Sayı: 3, 44 - 63, 25.11.2024

Öz

Küresel sera gazı emisyonlarının %24’ü ulaşım araçlarından, araçlarda fosil yakıtların kullanılmasından kaynaklanmaktadır. Elektrikli araçların yenilenebilir enerji ile şarj edilmesi durumunda, geleneksel yöntemlerle üretilen elektriğe kıyasla karbondioksit emisyonlarında %80-95 oranında azalma olmaktadır. Bu çalışmada, Edirne’deki bir alışveriş merkezi için iki elektrikli araç şarj istasyonu için fotovoltaik (PV)-rüzgar hibrit enerji sisteminin teknik ve ekonomik değerlendirmesi incelenmiştir. Hibrit yenilenebilir enerji ile çalışan şarj istasyonunun optimizasyonu HOMER yazılımı kullanılarak yapılmıştır. Optimum sistem tipleri, nakit akışları, etki analizleri ve enerji üretim analizleri tartışılmıştır. Sonuçlar, EVS istasyonu için en uygun rüzgar-PV hibrit sisteminin 50 kW nominal güce sahip dikey eksenli rüzgar türbinleri, 50 kW PV sistemi ve 52.1 kW güç dönüştürücüleri içerdiğini göstermektedir. Rüzgar-FV hibrit sisteminin toplam net bugünkü maliyeti 145.961 $, yıllık işletme maliyeti 1.881 $/yıl ve seviyelendirilmiş enerji maliyeti 0,0193 $/kWh’dir. Alışveriş merkezi için yenilenebilir enerji ile çalışan hibrit elektrikli araç şarj istasyonu, evrensel olarak uygulanabilecek mühendislik çözümleridir.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Agustin, J.L.B., Lopez, R.D. 2009. Simulation and Optimization of Independent Hybrid Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 13: 2111-2118. https://doi.org/10.1016/j.rser.2009.01.010
  • Bansal, S., Zong, Y., You, S., Popa, L.M., Xiao, J. 2020. Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources. Energies, 13: 2855. doi:10.3390/en13112855
  • Bass, R., Harley, R., Lambert, F., Rajasekaran, V., Pierce, J. 2001. Residential harmonic loads and EV charging. In: Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, 3: 803-808. doi:10.1109/PESW.2001.916965
  • Calise, F., Fabozzi, S., Vanoli., L., Vicidomini, M. 2021. A sustainable mobility strategy based on electric vehicles and photovoltaic panels for shopping malls. Sustainable Cities and Society, 70: 102891. https://doi.org/10.1016/j.scs.2021.10289
  • Chang, S., Cho, J., Heo, J., Kang, J., Kobashi, T. 2022. Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities. Applied Energy, 319: 119254. https://doi.org/10.1016/j.apenergy.2022.119254
  • Çiçek, A., Erdinç, O. 2019. PV-Batarya Hibrit Sistemi İçeren Elektrikli Araç Otoparkının Şarj Yönetimi. Avrupa Bilim ve Teknoloji Dergisi, (15): 466-474. https://doi.org/10.31590/ejosat.527350
  • Das, B.K., Hoque N., Mandal, S., Pal, T.K., Raihan, M. A. 2017. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy, 134: 775-788. https://doi.org/10.1016/j.energy.2017.06.024
  • Deaves, D.M., Lines, I.G. 1997. On the Fitting of Low Mean Wind Speed Data to the Weibull Distribution. Journal of wind engineering and industrial, 66: 169-78.
  • Ekren, O., Canbaz, C.H., Güvel, Ç.B. 2021. Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production, 279: 123615. DOI:10.1016/j.jclepro.2020.123615
  • Engin, M. 2010. Solar-Wind Hybrid Energy Generation System Design for Bornova, Celal Bayar University Soma Vocational School. Journal of Technical Sciences, 2(13): 11-20.
  • Engelhardt, J., Zepter, J.M., Gabderakhmanova, T., Marinelli, M. 2022. Energy management of a multi-battery system for renewable-based high power EV charging. Transportation, 14: 100198. DOI:10.48550/arXiv.2112.00351
  • Fadee, M., Radzi, M.A. 2012. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16: 3364-3369. https://doi.org/10.1016/j.rser.2012.02.071
  • Geth, F., Leemput, N., Van Roy, J., Buscher, J., Ponnette, R., Driesen, J. 2012. Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of the 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1-8. doi:10.1109/ISGTEurope.2012.6465692
  • Hiendro, A., Kurnianto, R., Rajagukguk, M., Simanjuntak, Y. M., Junaidi. 2013. Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia. Energy, Elsevier, 59(C): 652-657. DOI: 10.1016/j.energy.2013.06.005
  • Islam, M.S., Mithulananthana, N., Hung, D.Q. 2021. Coordinated EV charging for correlated EV and grid loads and PV output using a novel, correlated, probabilistic model. Journal of Cleaner Production, 279: 123615. https://doi.org/10.1016/j.jclepro.2020.123615
  • Jain, A., Bhullar, S. 2024. Operating modes of grid integrated PV-solar based electric vehicle charging system- a comprehensive review. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 8: 100519. https://doi.org/10.1016/j.prime.2024.100519
  • Karthikeyan S.P., Thomas P. 2024. Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review. GU J Sci. 37(3): 1256-1285. DOI: 10.35378/gujs.1321572
  • Lee S., Al-Ghussain L., Alrbai M., Al-Dahidi S. 2024. Integrating hybrid PV/wind-based electric vehicles charging stations with green hydrogen production in Kentucky through techno-economic assessment. International Journal of Hydrogen Energy, 71: 345–356. https://doi.org/10.1016/j.ijhydene.2024.05.053
  • Li, K.W., Priddy, A.P. 1985. Power Plant System Design, John Wiley & Sons, Inc., New York, NY USA.
  • Li, C.C., Ge, X., Zheng, Y., Xu, C., Ren, Y., Song, C., Yang, C. 2013. Techno-economic feasibility study of autonomous hybrid wind/PV/ battery power system for a household in Urumqi. Energy, 55: 263-272. DOI: 10.1016/j.energy.2013.03.084
  • Li, C. 2021. Technical and economic potential evaluation of an off-grid hybrid wind-fuel cell-battery energy system in Xining, China. International Journal Of Green Energy, 18(3): 258–270. https://doi.org/10.1080/15435075.2020.1854267
  • Ma, H., Balthasar, F., Tait, N., Riera-Palou, X. A. 2012. Harrison, A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy, 44: 160-173. DOI: 10.1016/j.enpol.2012.01.034
  • Ma, G., Jiang, L., Chen, Y., Dai, C., Ju, R. 2017. Study on the impact of electric vehicle charging load on nodal voltage deviation. Archives of Electrical Engineering, 66(3): 495-505. doi:10.1515/aee-2017-0037
  • Manwell, J.F., McGowan, J.G., Rogers, A.L. 2009. Wind Energy Explained: Theory, Design and Application, Wiley, 2nd edition.
  • Mohamed, A.A.S., El-Sayedc, A., Metwallya, H., Selem, S.I. 2020. Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization. Solar Energy, 205: 170-182. https://doi.org/10.1016/j.solener.2020.05.013
  • Moreno-Armendariz , M.A., Duchanoy, C.A., Calvo, H., Ibarra-Ontiveros, E., Salcedo-Castaneda, J., Ayala-Canseco, M., Garcia, D. 2021. Wind Booster Optimization for On-Site Energy Generation Using Vertical-Axis Wind Turbines. 21(14): 4775 https://doi.org/10.3390/s21144775
  • Moslehi, K., Kumar, R. 2010. A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1): 57-64. doi:10.1109/TSG.2010.2046346
  • Mouli, G.C., Bauer, P., Zeman, M. 2016. System design for a solar powered electric vehicle charging station for workplaces. Applied Energy, 168, 434-443. https://doi.org/10.1016/j.apenergy.2016.01.110
  • Nandini, K. K., Jayalakshmi, N.S., Vinay, K. J., Dattatraya, N. G., Ashish, S., Vidya, S. R., Ganesh K. 2023. Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method. Energies, MDPI, 16(4): 1-27. DOI:10.3390/en16041781
  • Nurmuhammed, M., Karadağ, T. 2021. A review on locating the electric vehicle charging stations and their effect on the energy network. Journal of Science, PART A: Engineering and Innovation, 8(2): 218-233. DOI:10.35833/MPCE.2018.000374
  • Patel, M.P. 1999. Wind and Solar Power Systems, CRC Pres LLC, New York.
  • Patel, M.R. 2006. Wind and Solar Power System Design Analysis and Operation, Taylor & Francis, Raton. http://uk.farnell.com/images/en_UK/design_findings8pt2.pdf
  • Shadman Abid, M., Ahshan R., Al Abri R., Al-Badi A., Albadi M. 2024. Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids. Applied Energy, 353: 122028. DOI:10.1016/j.apenergy.2023.122028
  • Simmons, D.M. 1975. Wind Power, Noyes Data Corporation, Park Ridge, California, 1975.
  • Singh, M., Kar, I., Kumar, P. 2010. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In: Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC), 196-203. doi:10.1109/EPEPEMC.2010.5606657
  • Staats, P.T., Grady, W.M. 1997. A. Arapostathis, R.S. Thallam, A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers. IEEE Transactions on Power Delivery, 12(3): 1258-1266. doi:10.1109/61.637002
  • Sun, B. 2021. A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage. Journal of Cleaner Production, 288: 125564. https://doi.org/10.1016/j.jclepro.2020.125564
  • Topuz, A., Erdoğan, B., Taşkaya G. 2017. Modeling of the Solar Irrigation System Using Photovoltaic Effect. Karaelmas Fen ve Müh. Derg. 7(2): 356-363.
  • Ucer, E., Kisacikoglu, M.C., Gurbuz, A.C. 2018. Learning EV Integration Impact on a Low Voltage Distribution Grid. In: Proceedings of the 2018 IEEE Power and Energy Society General Meeting (PESGM), 1-5. doi:10.1109/PESGM.2018.8586208
  • Ullah, H., Czapp, S., Szultka, S., Tariq, H., Qasim, U.B., Imran, H. 2023. Crystalline silicon (c-Si)-based tunnel oxide passivated contact (topcon) solar cells: A review. Energies, 16 (2): 715. https://doi.org/10.3390/en16020715
  • Veliz, M.T., Kamel, S., Hasanien, H.M., Arevalo, P., Turky, R.A., Jurado, F. 2022. A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations. Energy, 253: 124219. DOI: 10.1016/j.energy.2022.124219
  • Wali, S.B., Hannan, M.A., Pin Jern Ker, Abd Rahman, M.S., Tiong, S.K., Begum, R.A., Indra Mahlia T.M. 2023. Techno-economic assessment of a hybrid renewable energy storage system for rural community towards achieving sustainable development goals. Energy Strategy Reviews, 50: 101217. https://doi.org/10.1016/j.esr.2023.101217
  • EEA 2024. https://www.eea.europa.eu/highlights/electric-vehicles-will-help-the
  • IEA 2024. https://www.iea.org/reports/electric-vehicles IEA 2024. https://www.eurostat.ec.europa.eu; EEA
  • IEA 2023. https://www.iea.org/topics/transport
  • IEA 2023. https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales)(Paoli)
  • SATATISTA 2024. https://www.statista.com/chart/26845/global-electric-car-sales/
  • IEA 2023. https://www.iea.org/data-and-statistics/data-tools/global-ev-data explorer?gclid=Cj0KCQjwwISlBhD6ARIsAESAmp5pa6qp5XiiqW5tOuchBIscktxrk04oiSV3l70xuEDgHCzyOglD_0aAqAXEALw_wcB
  • IEA 2024. https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales)(Paoli
  • TEHAD 2024. https://www.tehad.org/2022/07/08/2022-yili-ilk-6-ayinda-satilan-elektrikli-ve-hibrid-otomobil-satis-rakamlari/
  • TEHAD 2024. https://www.tehad.org/2021/04/07/2021-yili-ilk-ceyreginde-elektrikli-ve-hibrid-arac-satislari-artti/
  • Elektrikli-sarj-istasyonlari 2024. https://www.elektrikli.com.tr>elektrikli-sarj-istasyonlari
  • Googlemaps 2023. https://www.google.com/maps/search/türkiye+şarj+istasyonları/@41.2651324,26.3597646,8z/data=!3m1!4b1
  • HOMER 2023. https://www.file:/// chapter3_HOMERMODELING.pdf
  • RETScreen 2023. https://www.RETScreen-NRCan/CanmetENERGY
  • SOLARGIS 2024. https://solargis.com/products/regional-solar-study Shopping mall 2023. http://shopping mall technical office manager’s report
  • TUİK 2023. https://data.tuik.gov.tr/Bulten/Index?p=Tourism-Statistics-Quarter-IV:-October-December-and-Annual,-2020-37438
  • Anerngroup 2024. https://www.anerngroup.com/products/solar-panel/
  • Yeni Trakya Enerji 2024. http://www.yenitrakyaenerji.com
  • Hi-techsolution 2024. https://hi-techsolution.eu/products/vertical-axis-wind-turbine/vertical-axis-wind-turbine-aeolos-wv-09/

Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey

Yıl 2024, Cilt: 14 Sayı: 3, 44 - 63, 25.11.2024

Öz

24% of global greenhouse gas emissions originate from the transport vehicles, with the use of fossil fuels in vehicles. If electric vehicles are charged with renewable energy, there is an 80-95% reduction in carbon dioxide emissions compared to electricity produced by conventional methods. In this study, the technical and economic evaluation of a photovoltaic (PV)-wind hybrid energy system for two electric vehicle charging stations for a shopping mall in Edirne was investigated. Optimization of the hybrid renewable energy powered charging station was made using HOMER software. The optimal system types, cash flows, impact analyse, and energy production analyse were discussed. The results show that the most suitable wind-PV hybrid system for the EVS station includes vertical axis wind turbines with 50 kW rated power, 50 kW PV system and 52.1 kW power converters. The wind-PV hybrid system has a total net present cost of $145,961, the net present cost of $145,961, an annual operating cost of $1,881/year and the levelized cost of energy of $0.0193/kWh. The renewable energy powered hybrid electric vehicle charging station for shopping mall is engineering solutions that can be applied universally.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Agustin, J.L.B., Lopez, R.D. 2009. Simulation and Optimization of Independent Hybrid Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 13: 2111-2118. https://doi.org/10.1016/j.rser.2009.01.010
  • Bansal, S., Zong, Y., You, S., Popa, L.M., Xiao, J. 2020. Technical and Economic Analysis of One-Stop Charging Stations for Battery and Fuel Cell EV with Renewable Energy Sources. Energies, 13: 2855. doi:10.3390/en13112855
  • Bass, R., Harley, R., Lambert, F., Rajasekaran, V., Pierce, J. 2001. Residential harmonic loads and EV charging. In: Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, 3: 803-808. doi:10.1109/PESW.2001.916965
  • Calise, F., Fabozzi, S., Vanoli., L., Vicidomini, M. 2021. A sustainable mobility strategy based on electric vehicles and photovoltaic panels for shopping malls. Sustainable Cities and Society, 70: 102891. https://doi.org/10.1016/j.scs.2021.10289
  • Chang, S., Cho, J., Heo, J., Kang, J., Kobashi, T. 2022. Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities. Applied Energy, 319: 119254. https://doi.org/10.1016/j.apenergy.2022.119254
  • Çiçek, A., Erdinç, O. 2019. PV-Batarya Hibrit Sistemi İçeren Elektrikli Araç Otoparkının Şarj Yönetimi. Avrupa Bilim ve Teknoloji Dergisi, (15): 466-474. https://doi.org/10.31590/ejosat.527350
  • Das, B.K., Hoque N., Mandal, S., Pal, T.K., Raihan, M. A. 2017. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy, 134: 775-788. https://doi.org/10.1016/j.energy.2017.06.024
  • Deaves, D.M., Lines, I.G. 1997. On the Fitting of Low Mean Wind Speed Data to the Weibull Distribution. Journal of wind engineering and industrial, 66: 169-78.
  • Ekren, O., Canbaz, C.H., Güvel, Ç.B. 2021. Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production, 279: 123615. DOI:10.1016/j.jclepro.2020.123615
  • Engin, M. 2010. Solar-Wind Hybrid Energy Generation System Design for Bornova, Celal Bayar University Soma Vocational School. Journal of Technical Sciences, 2(13): 11-20.
  • Engelhardt, J., Zepter, J.M., Gabderakhmanova, T., Marinelli, M. 2022. Energy management of a multi-battery system for renewable-based high power EV charging. Transportation, 14: 100198. DOI:10.48550/arXiv.2112.00351
  • Fadee, M., Radzi, M.A. 2012. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16: 3364-3369. https://doi.org/10.1016/j.rser.2012.02.071
  • Geth, F., Leemput, N., Van Roy, J., Buscher, J., Ponnette, R., Driesen, J. 2012. Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of the 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1-8. doi:10.1109/ISGTEurope.2012.6465692
  • Hiendro, A., Kurnianto, R., Rajagukguk, M., Simanjuntak, Y. M., Junaidi. 2013. Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia. Energy, Elsevier, 59(C): 652-657. DOI: 10.1016/j.energy.2013.06.005
  • Islam, M.S., Mithulananthana, N., Hung, D.Q. 2021. Coordinated EV charging for correlated EV and grid loads and PV output using a novel, correlated, probabilistic model. Journal of Cleaner Production, 279: 123615. https://doi.org/10.1016/j.jclepro.2020.123615
  • Jain, A., Bhullar, S. 2024. Operating modes of grid integrated PV-solar based electric vehicle charging system- a comprehensive review. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 8: 100519. https://doi.org/10.1016/j.prime.2024.100519
  • Karthikeyan S.P., Thomas P. 2024. Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review. GU J Sci. 37(3): 1256-1285. DOI: 10.35378/gujs.1321572
  • Lee S., Al-Ghussain L., Alrbai M., Al-Dahidi S. 2024. Integrating hybrid PV/wind-based electric vehicles charging stations with green hydrogen production in Kentucky through techno-economic assessment. International Journal of Hydrogen Energy, 71: 345–356. https://doi.org/10.1016/j.ijhydene.2024.05.053
  • Li, K.W., Priddy, A.P. 1985. Power Plant System Design, John Wiley & Sons, Inc., New York, NY USA.
  • Li, C.C., Ge, X., Zheng, Y., Xu, C., Ren, Y., Song, C., Yang, C. 2013. Techno-economic feasibility study of autonomous hybrid wind/PV/ battery power system for a household in Urumqi. Energy, 55: 263-272. DOI: 10.1016/j.energy.2013.03.084
  • Li, C. 2021. Technical and economic potential evaluation of an off-grid hybrid wind-fuel cell-battery energy system in Xining, China. International Journal Of Green Energy, 18(3): 258–270. https://doi.org/10.1080/15435075.2020.1854267
  • Ma, H., Balthasar, F., Tait, N., Riera-Palou, X. A. 2012. Harrison, A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy, 44: 160-173. DOI: 10.1016/j.enpol.2012.01.034
  • Ma, G., Jiang, L., Chen, Y., Dai, C., Ju, R. 2017. Study on the impact of electric vehicle charging load on nodal voltage deviation. Archives of Electrical Engineering, 66(3): 495-505. doi:10.1515/aee-2017-0037
  • Manwell, J.F., McGowan, J.G., Rogers, A.L. 2009. Wind Energy Explained: Theory, Design and Application, Wiley, 2nd edition.
  • Mohamed, A.A.S., El-Sayedc, A., Metwallya, H., Selem, S.I. 2020. Grid integration of a PV system supporting an EV charging station using Salp Swarm Optimization. Solar Energy, 205: 170-182. https://doi.org/10.1016/j.solener.2020.05.013
  • Moreno-Armendariz , M.A., Duchanoy, C.A., Calvo, H., Ibarra-Ontiveros, E., Salcedo-Castaneda, J., Ayala-Canseco, M., Garcia, D. 2021. Wind Booster Optimization for On-Site Energy Generation Using Vertical-Axis Wind Turbines. 21(14): 4775 https://doi.org/10.3390/s21144775
  • Moslehi, K., Kumar, R. 2010. A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1): 57-64. doi:10.1109/TSG.2010.2046346
  • Mouli, G.C., Bauer, P., Zeman, M. 2016. System design for a solar powered electric vehicle charging station for workplaces. Applied Energy, 168, 434-443. https://doi.org/10.1016/j.apenergy.2016.01.110
  • Nandini, K. K., Jayalakshmi, N.S., Vinay, K. J., Dattatraya, N. G., Ashish, S., Vidya, S. R., Ganesh K. 2023. Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method. Energies, MDPI, 16(4): 1-27. DOI:10.3390/en16041781
  • Nurmuhammed, M., Karadağ, T. 2021. A review on locating the electric vehicle charging stations and their effect on the energy network. Journal of Science, PART A: Engineering and Innovation, 8(2): 218-233. DOI:10.35833/MPCE.2018.000374
  • Patel, M.P. 1999. Wind and Solar Power Systems, CRC Pres LLC, New York.
  • Patel, M.R. 2006. Wind and Solar Power System Design Analysis and Operation, Taylor & Francis, Raton. http://uk.farnell.com/images/en_UK/design_findings8pt2.pdf
  • Shadman Abid, M., Ahshan R., Al Abri R., Al-Badi A., Albadi M. 2024. Techno-economic and environmental assessment of renewable energy sources, virtual synchronous generators, and electric vehicle charging stations in microgrids. Applied Energy, 353: 122028. DOI:10.1016/j.apenergy.2023.122028
  • Simmons, D.M. 1975. Wind Power, Noyes Data Corporation, Park Ridge, California, 1975.
  • Singh, M., Kar, I., Kumar, P. 2010. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In: Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC), 196-203. doi:10.1109/EPEPEMC.2010.5606657
  • Staats, P.T., Grady, W.M. 1997. A. Arapostathis, R.S. Thallam, A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers. IEEE Transactions on Power Delivery, 12(3): 1258-1266. doi:10.1109/61.637002
  • Sun, B. 2021. A multi-objective optimization model for fast electric vehicle charging stations with wind, PV power and energy storage. Journal of Cleaner Production, 288: 125564. https://doi.org/10.1016/j.jclepro.2020.125564
  • Topuz, A., Erdoğan, B., Taşkaya G. 2017. Modeling of the Solar Irrigation System Using Photovoltaic Effect. Karaelmas Fen ve Müh. Derg. 7(2): 356-363.
  • Ucer, E., Kisacikoglu, M.C., Gurbuz, A.C. 2018. Learning EV Integration Impact on a Low Voltage Distribution Grid. In: Proceedings of the 2018 IEEE Power and Energy Society General Meeting (PESGM), 1-5. doi:10.1109/PESGM.2018.8586208
  • Ullah, H., Czapp, S., Szultka, S., Tariq, H., Qasim, U.B., Imran, H. 2023. Crystalline silicon (c-Si)-based tunnel oxide passivated contact (topcon) solar cells: A review. Energies, 16 (2): 715. https://doi.org/10.3390/en16020715
  • Veliz, M.T., Kamel, S., Hasanien, H.M., Arevalo, P., Turky, R.A., Jurado, F. 2022. A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations. Energy, 253: 124219. DOI: 10.1016/j.energy.2022.124219
  • Wali, S.B., Hannan, M.A., Pin Jern Ker, Abd Rahman, M.S., Tiong, S.K., Begum, R.A., Indra Mahlia T.M. 2023. Techno-economic assessment of a hybrid renewable energy storage system for rural community towards achieving sustainable development goals. Energy Strategy Reviews, 50: 101217. https://doi.org/10.1016/j.esr.2023.101217
  • EEA 2024. https://www.eea.europa.eu/highlights/electric-vehicles-will-help-the
  • IEA 2024. https://www.iea.org/reports/electric-vehicles IEA 2024. https://www.eurostat.ec.europa.eu; EEA
  • IEA 2023. https://www.iea.org/topics/transport
  • IEA 2023. https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales)(Paoli)
  • SATATISTA 2024. https://www.statista.com/chart/26845/global-electric-car-sales/
  • IEA 2023. https://www.iea.org/data-and-statistics/data-tools/global-ev-data explorer?gclid=Cj0KCQjwwISlBhD6ARIsAESAmp5pa6qp5XiiqW5tOuchBIscktxrk04oiSV3l70xuEDgHCzyOglD_0aAqAXEALw_wcB
  • IEA 2024. https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales)(Paoli
  • TEHAD 2024. https://www.tehad.org/2022/07/08/2022-yili-ilk-6-ayinda-satilan-elektrikli-ve-hibrid-otomobil-satis-rakamlari/
  • TEHAD 2024. https://www.tehad.org/2021/04/07/2021-yili-ilk-ceyreginde-elektrikli-ve-hibrid-arac-satislari-artti/
  • Elektrikli-sarj-istasyonlari 2024. https://www.elektrikli.com.tr>elektrikli-sarj-istasyonlari
  • Googlemaps 2023. https://www.google.com/maps/search/türkiye+şarj+istasyonları/@41.2651324,26.3597646,8z/data=!3m1!4b1
  • HOMER 2023. https://www.file:/// chapter3_HOMERMODELING.pdf
  • RETScreen 2023. https://www.RETScreen-NRCan/CanmetENERGY
  • SOLARGIS 2024. https://solargis.com/products/regional-solar-study Shopping mall 2023. http://shopping mall technical office manager’s report
  • TUİK 2023. https://data.tuik.gov.tr/Bulten/Index?p=Tourism-Statistics-Quarter-IV:-October-December-and-Annual,-2020-37438
  • Anerngroup 2024. https://www.anerngroup.com/products/solar-panel/
  • Yeni Trakya Enerji 2024. http://www.yenitrakyaenerji.com
  • Hi-techsolution 2024. https://hi-techsolution.eu/products/vertical-axis-wind-turbine/vertical-axis-wind-turbine-aeolos-wv-09/
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Olarak Sürdürülebilir Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Hacer Akhan 0000-0002-7896-6441

Proje Numarası -
Yayımlanma Tarihi 25 Kasım 2024
Gönderilme Tarihi 3 Mayıs 2024
Kabul Tarihi 23 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Akhan, H. (2024). Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen Ve Mühendislik Dergisi, 14(3), 44-63. https://doi.org/10.7212/karaelmasfen.1478220
AMA Akhan H. Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi. Kasım 2024;14(3):44-63. doi:10.7212/karaelmasfen.1478220
Chicago Akhan, Hacer. “Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey”. Karaelmas Fen Ve Mühendislik Dergisi 14, sy. 3 (Kasım 2024): 44-63. https://doi.org/10.7212/karaelmasfen.1478220.
EndNote Akhan H (01 Kasım 2024) Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi 14 3 44–63.
IEEE H. Akhan, “Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey”, Karaelmas Fen ve Mühendislik Dergisi, c. 14, sy. 3, ss. 44–63, 2024, doi: 10.7212/karaelmasfen.1478220.
ISNAD Akhan, Hacer. “Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey”. Karaelmas Fen ve Mühendislik Dergisi 14/3 (Kasım 2024), 44-63. https://doi.org/10.7212/karaelmasfen.1478220.
JAMA Akhan H. Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:44–63.
MLA Akhan, Hacer. “Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey”. Karaelmas Fen Ve Mühendislik Dergisi, c. 14, sy. 3, 2024, ss. 44-63, doi:10.7212/karaelmasfen.1478220.
Vancouver Akhan H. Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(3):44-63.