Araştırma Makalesi
BibTex RIS Kaynak Göster

Construction Contract Price Prediction Using Machine Learning with Bidding Parameters

Yıl 2024, Cilt: 14 Sayı: 3, 64 - 73, 25.11.2024

Öz

In public tenders, contract values are primarily composed of quantities and unit prices, and therefore are closely related to these parameters. Besides these parameters, contract values are also meaningfully associated with procurement data that can produce more straightforward numerical expressions and provide significant insights into monetary agreement values. Therefore, evaluating the meaningful relationship between procurement data and contract value becomes crucial. This study aims to predict contract amounts in construction works using machine learning methods with bidding variables. Basic and popular algorithms were employed for this purpose. A series of hyperparameter optimizations were conducted to enhance prediction models, yielding positive results. Particularly, the parametric optimizations applied to XGBoost and ANN algorithms, which demonstrated the best results in the study, improved the performance of the existing model. XGBoost achieved the best generalization ability with an of 0.9435, MAE of 1.2988, and RMSE of 2.0621. The study contributes to the literature by introducing novel parameters and implementing hyperparameter optimizations in the machine learning model.

Kaynakça

  • 4734. (t.y.). (4734). Sayılı Kamu İhale Kanunu.
  • 4734 Sayılı Kamu İhale Kanunu. (t.y.).
  • Ali, ZH., Burhan, AM. 2023. Hybrid machine learning approach for construction cost estimation: an evaluation of extreme gradient boosting model. Asian Journal of Civil Engineering, 24(7): 2427-2442. doi:10.1007/s42107-023-00651-z
  • Aslay, SE., Dede, T. 2022. 3D cost optimization of 3 story RC constructional building using Jaya algorithm. Structures, 40: 803-811. doi:10.1016/j.istruc.2022.04.055
  • Aslay, SE., Dede, T. 2023. Reduce the construction cost of a 7-story RC public building with metaheuristic algorithms. Architectural Engineering and Design Management, doi:10.1080/17452007.2023.2195612
  • Ay, Ş., Ekinci, E. 2022. Comparison of Machine Learning and Deep Learning Methods for Modeling Ozone Concentrations. Journal of Intelligent Systems: Theory and Applications, 5(2): 106-118. doi:10.38016/jista.1054331
  • Aziz, RF., Hafez, SM. Abuel-Magd, YR. 2014. Smart optimization for mega construction projects using artificial intelligence. Alexandria Engineering Journal, 53(3): 591-606. doi:10.1016/j.aej.2014.05.003
  • Başakın, EE., Ekmekcioğlu, Ö., Ozger, M. 2019. Drought Analysis with Machine Learning Methods. Pamukkale University Journal of Engineering Sciences, 25(8): 985-991. doi:10.5505/pajes.2019.34392
  • Bharadiya, JP. 2023. A Review of Bayesian Machine Learning Principles, Methods, and Applications. International Journal of Innovative Science and Research Technology (C. 8). www.ijisrt.com adresinden erişildi.
  • Car-Pusic, D., Petruseva, S., Zileska Pancovska, V., Zafirovski, Z. 2020. Neural Network-Based Model for Predicting Preliminary Construction Cost as Part of Cost Predicting System. Advances in Civil Engineering. doi:10.1155/2020/8886170
  • Dang-Trinh, N., Duc-Thang, P., Nguyen-Ngoc Cuong, T., Duc-Hoc, T. 2022. Machine learning models for estimating preliminary factory construction cost: case study in Southern Vietnam. International Journal of Construction Management, doi:10.1080/15623599.2022.2106043
  • Elhag, TMS., Boussabaine, AH., Ballal, TMA. 2005. Critical determinants of construction tendering costs: Quantity surveyors’ standpoint. International Journal of Project Management, 23(7): 538-545. doi:10.1016/j.ijproman.2005.04.002
  • Emeç, Ş., Tekin, D. 2022. Housing Demand Forecasting with Machine Learning Methods. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(Special Issue I): 36-52. doi:10.18185/erzifbed.1199535
  • Gurmu, A., Miri, MP. 2023. Machine learning regression for estimating the cost range of building projects. Construction Innovation. doi:10.1108/CI-08-2022-0197
  • İlgün, EG., Sönmez, Y., Dener, M. 2023. Makine Öğrenme Yöntemi Kullanılarak DarkWEB Trafiği Tespiti ve Sınıflandırılması. Gazi Journal of Engineering Sciences, 9(4): 126-140. doi:10.30855/gmbd.0705s13
  • Kilinc, HC., Haznedar, B., Ozkan, F., Katipoğlu, OM. 2024. An evolutionary hybrid method based on particle swarm optimization algorithm and extreme gradient boosting for short-term streamflow forecasting. Acta Geophysica. doi:10.1007/s11600-024-01307-5
  • Kocaman, E., Kuru, M., Çaliş, G. 2020. Investigating the effect of tendering procedure and contract type on the construction contract price. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 31(1): 9789-9812. doi:10.18400/TEKDERG.458054
  • Kovacevic, M., Ivaniševic, N., Petronijevic, P., Despotovic, V. 2021. Construction cost estimation of reinforced and prestressed concrete bridges using machine learning. Gradjevinar, 73(1): 1-13. doi:10.14256/JCE.2738.2019
  • Li, H., Zhang, Z., Liu, Z. 2017. Application of artificial neural networks for catalysis: A review. Catalysts. MDPI. doi:10.3390/catal7100306
  • Mir, M., Kabir, HM. D., Nasirzadeh, F., Khosravi, A. 2021. Neural network-based interval forecasting of construction material prices. Journal of Building Engineering, 39. doi:10.1016/j.jobe.2021.102288
  • Özçift, A., Kılınç, D., Bozyiğit, F. 2019. Grid Aramayla Optimize Edilmiş Bayes Lojistik Regresyon Algoritmasının Türkçe Mikro Blog Verilerinde Sanal Zorbalık Tespitinde Kullanılması. Academic Platform Journal of Engineering and Science, 7(3): 355-361. doi:10.21541/apjes.496018
  • Rafiei, MH., Adeli, H. 2018. Novel Machine-Learning Model for Estimating Construction Costs Considering Economic Variables and Indexes. Journal of Construction Engineering and Management, 144(12). doi:10.1061/(asce)co.1943-7862.0001570
  • Sanni-Anibire, MO., Mohamad Zin, R., Olatunji, SO. 2021. Developing a preliminary cost estimation model for tall buildings based on machine learning. International Journal of Management Science and Engineering Management, 16(2): 134-142. doi:10.1080/17509653.2021.1905568
  • Shiha, A., Dorra, EM., Nassar, K. 2020. Neural Networks Model for Prediction of Construction Material Prices in Egypt Using Macroeconomic Indicators. Journal of Construction Engineering and Management, 146(3). doi:10.1061/(asce)co.1943-7862.0001785
  • Sinap, V. 2023. Makine Öğrenmesi Teknikleri ile Counter-Strike: Global Offensive Raunt Sonuçlarının Tahminlenmesi. Journal of Intelligent Systems: Theory and Applications, 6(2): 119-129. doi:10.38016/jista.1235031
  • Skitmore, RM., Ng, ST., Ng, T. 2003. Building and Environment Forecast Models for Actual Construction Time and Cost. Building and Environment, 38(8): 1075-1083.
  • Sonuç, E., Özcan, E. 2022. Makine Öğrenme Teknikleri Kullanılarak Kükürt Giderme İşleminde Kullanılan Malzeme Miktarının Tahmini. Journal of Intelligent Systems: Theory and Applications, 5(1): 57-63. doi:10.38016/jista.993853
  • Şahin, F., Tulum, G., Karaca, Ş. 2023. Anne Sağlığı Riski İçin Makine Öğrenmesi Modellerinin Performans Karşılaştırması. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1325431
  • Takcı, H. 2023. Performance-enhanced KNN algorithm-based heart disease prediction with the help of optimum parameters. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1): 451-460. doi:10.17341/gazimmfd.977127
  • Thai, HT. 2022. Machine learning for structural engineering: A state-of-the-art review. Structures. Elsevier Ltd. doi:10.1016/j.istruc.2022.02.003
  • Wang, R., Asghari, V., Cheung, CM., Hsu, SC., Lee, CJ. 2022. Assessing effects of economic factors on construction cost estimation using deep neural networks. Automation in Construction, 134. doi:10.1016/j.autcon.2021.104080
  • Yazğılı, E., Baykara, M. 2022. Türkçe metinlerde makine öğrenmesi yöntemleri ile siber zorbalık tespiti. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. doi:10.17714/gumusfenbil.935448
  • Zeynep, AD., Kılıç, E. 2019. Prediction of Bank Stocks Price with Machine Learning Techniques. TBV-BBMD, 12(2): 30-39.

Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini

Yıl 2024, Cilt: 14 Sayı: 3, 64 - 73, 25.11.2024

Öz

Kamu ihalelerinde sözleşme bedelleri, temel olarak metraj ve birim fiyatlardan oluşmaktadır ve dolayısıyla bu parametrelerle yakından ilişkilidir. Bu parametrelerden başka, daha sade sayısal ifadeler üretebilen ve parasal anlaşma bedelleri hakkında önemli ipuçları veren ihale verileriyle de anlamlı ilişkilere sahiptir. Dolayısıyla ihale verileri ile sözleşme bedeli arasındaki anlamlı ilişkinin değerlendirilmesi önem kazanmaktadır. Bu çalışmada inşaat işlerinde ihale değişkenleri kullanılarak makine öğrenmesi yöntemleri ile sözleşme bedelleri tahmin edilmeye çalışılmaktadır. Bunun için temel ve popüler algoritmalardan yararlanılmıştır. Tahmin modellerini geliştirmek amacıyla bir dizi hiper parametre optimizasyonu yapılarak olumlu sonuçlar alınmıştır. Özellikle çalışmada en iyi sonuçlara sahip olan XGBoost ve ANN algoritmalarında uygulanan parametrik optimizasyonlar, mevcut modelin daha iyi bir performansı göstermesini sağlamıştır. XGBoost 0.9435, MAE 1.2988, RMSE 2.0621 en iyi genelleme yeteneğine sahip algoritma olmuştur. Çalışma hem kullandığı parametrelerin özgünlüğü hem de makine öğrenmesi modelinde uygulanan hiper parametre optimizasyonları ile literatüre katkı sunmaktadır.

Kaynakça

  • 4734. (t.y.). (4734). Sayılı Kamu İhale Kanunu.
  • 4734 Sayılı Kamu İhale Kanunu. (t.y.).
  • Ali, ZH., Burhan, AM. 2023. Hybrid machine learning approach for construction cost estimation: an evaluation of extreme gradient boosting model. Asian Journal of Civil Engineering, 24(7): 2427-2442. doi:10.1007/s42107-023-00651-z
  • Aslay, SE., Dede, T. 2022. 3D cost optimization of 3 story RC constructional building using Jaya algorithm. Structures, 40: 803-811. doi:10.1016/j.istruc.2022.04.055
  • Aslay, SE., Dede, T. 2023. Reduce the construction cost of a 7-story RC public building with metaheuristic algorithms. Architectural Engineering and Design Management, doi:10.1080/17452007.2023.2195612
  • Ay, Ş., Ekinci, E. 2022. Comparison of Machine Learning and Deep Learning Methods for Modeling Ozone Concentrations. Journal of Intelligent Systems: Theory and Applications, 5(2): 106-118. doi:10.38016/jista.1054331
  • Aziz, RF., Hafez, SM. Abuel-Magd, YR. 2014. Smart optimization for mega construction projects using artificial intelligence. Alexandria Engineering Journal, 53(3): 591-606. doi:10.1016/j.aej.2014.05.003
  • Başakın, EE., Ekmekcioğlu, Ö., Ozger, M. 2019. Drought Analysis with Machine Learning Methods. Pamukkale University Journal of Engineering Sciences, 25(8): 985-991. doi:10.5505/pajes.2019.34392
  • Bharadiya, JP. 2023. A Review of Bayesian Machine Learning Principles, Methods, and Applications. International Journal of Innovative Science and Research Technology (C. 8). www.ijisrt.com adresinden erişildi.
  • Car-Pusic, D., Petruseva, S., Zileska Pancovska, V., Zafirovski, Z. 2020. Neural Network-Based Model for Predicting Preliminary Construction Cost as Part of Cost Predicting System. Advances in Civil Engineering. doi:10.1155/2020/8886170
  • Dang-Trinh, N., Duc-Thang, P., Nguyen-Ngoc Cuong, T., Duc-Hoc, T. 2022. Machine learning models for estimating preliminary factory construction cost: case study in Southern Vietnam. International Journal of Construction Management, doi:10.1080/15623599.2022.2106043
  • Elhag, TMS., Boussabaine, AH., Ballal, TMA. 2005. Critical determinants of construction tendering costs: Quantity surveyors’ standpoint. International Journal of Project Management, 23(7): 538-545. doi:10.1016/j.ijproman.2005.04.002
  • Emeç, Ş., Tekin, D. 2022. Housing Demand Forecasting with Machine Learning Methods. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(Special Issue I): 36-52. doi:10.18185/erzifbed.1199535
  • Gurmu, A., Miri, MP. 2023. Machine learning regression for estimating the cost range of building projects. Construction Innovation. doi:10.1108/CI-08-2022-0197
  • İlgün, EG., Sönmez, Y., Dener, M. 2023. Makine Öğrenme Yöntemi Kullanılarak DarkWEB Trafiği Tespiti ve Sınıflandırılması. Gazi Journal of Engineering Sciences, 9(4): 126-140. doi:10.30855/gmbd.0705s13
  • Kilinc, HC., Haznedar, B., Ozkan, F., Katipoğlu, OM. 2024. An evolutionary hybrid method based on particle swarm optimization algorithm and extreme gradient boosting for short-term streamflow forecasting. Acta Geophysica. doi:10.1007/s11600-024-01307-5
  • Kocaman, E., Kuru, M., Çaliş, G. 2020. Investigating the effect of tendering procedure and contract type on the construction contract price. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 31(1): 9789-9812. doi:10.18400/TEKDERG.458054
  • Kovacevic, M., Ivaniševic, N., Petronijevic, P., Despotovic, V. 2021. Construction cost estimation of reinforced and prestressed concrete bridges using machine learning. Gradjevinar, 73(1): 1-13. doi:10.14256/JCE.2738.2019
  • Li, H., Zhang, Z., Liu, Z. 2017. Application of artificial neural networks for catalysis: A review. Catalysts. MDPI. doi:10.3390/catal7100306
  • Mir, M., Kabir, HM. D., Nasirzadeh, F., Khosravi, A. 2021. Neural network-based interval forecasting of construction material prices. Journal of Building Engineering, 39. doi:10.1016/j.jobe.2021.102288
  • Özçift, A., Kılınç, D., Bozyiğit, F. 2019. Grid Aramayla Optimize Edilmiş Bayes Lojistik Regresyon Algoritmasının Türkçe Mikro Blog Verilerinde Sanal Zorbalık Tespitinde Kullanılması. Academic Platform Journal of Engineering and Science, 7(3): 355-361. doi:10.21541/apjes.496018
  • Rafiei, MH., Adeli, H. 2018. Novel Machine-Learning Model for Estimating Construction Costs Considering Economic Variables and Indexes. Journal of Construction Engineering and Management, 144(12). doi:10.1061/(asce)co.1943-7862.0001570
  • Sanni-Anibire, MO., Mohamad Zin, R., Olatunji, SO. 2021. Developing a preliminary cost estimation model for tall buildings based on machine learning. International Journal of Management Science and Engineering Management, 16(2): 134-142. doi:10.1080/17509653.2021.1905568
  • Shiha, A., Dorra, EM., Nassar, K. 2020. Neural Networks Model for Prediction of Construction Material Prices in Egypt Using Macroeconomic Indicators. Journal of Construction Engineering and Management, 146(3). doi:10.1061/(asce)co.1943-7862.0001785
  • Sinap, V. 2023. Makine Öğrenmesi Teknikleri ile Counter-Strike: Global Offensive Raunt Sonuçlarının Tahminlenmesi. Journal of Intelligent Systems: Theory and Applications, 6(2): 119-129. doi:10.38016/jista.1235031
  • Skitmore, RM., Ng, ST., Ng, T. 2003. Building and Environment Forecast Models for Actual Construction Time and Cost. Building and Environment, 38(8): 1075-1083.
  • Sonuç, E., Özcan, E. 2022. Makine Öğrenme Teknikleri Kullanılarak Kükürt Giderme İşleminde Kullanılan Malzeme Miktarının Tahmini. Journal of Intelligent Systems: Theory and Applications, 5(1): 57-63. doi:10.38016/jista.993853
  • Şahin, F., Tulum, G., Karaca, Ş. 2023. Anne Sağlığı Riski İçin Makine Öğrenmesi Modellerinin Performans Karşılaştırması. DÜMF Mühendislik Dergisi. doi:10.24012/dumf.1325431
  • Takcı, H. 2023. Performance-enhanced KNN algorithm-based heart disease prediction with the help of optimum parameters. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1): 451-460. doi:10.17341/gazimmfd.977127
  • Thai, HT. 2022. Machine learning for structural engineering: A state-of-the-art review. Structures. Elsevier Ltd. doi:10.1016/j.istruc.2022.02.003
  • Wang, R., Asghari, V., Cheung, CM., Hsu, SC., Lee, CJ. 2022. Assessing effects of economic factors on construction cost estimation using deep neural networks. Automation in Construction, 134. doi:10.1016/j.autcon.2021.104080
  • Yazğılı, E., Baykara, M. 2022. Türkçe metinlerde makine öğrenmesi yöntemleri ile siber zorbalık tespiti. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. doi:10.17714/gumusfenbil.935448
  • Zeynep, AD., Kılıç, E. 2019. Prediction of Bank Stocks Price with Machine Learning Techniques. TBV-BBMD, 12(2): 30-39.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı İşletmesi
Bölüm Araştırma Makaleleri
Yazarlar

Semi Emrah Aslay 0000-0002-0127-5474

Yayımlanma Tarihi 25 Kasım 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 30 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 3

Kaynak Göster

APA Aslay, S. E. (2024). Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini. Karaelmas Fen Ve Mühendislik Dergisi, 14(3), 64-73.
AMA Aslay SE. Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini. Karaelmas Fen ve Mühendislik Dergisi. Kasım 2024;14(3):64-73.
Chicago Aslay, Semi Emrah. “Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi Ile Sözleşme Bedeli Tahmini”. Karaelmas Fen Ve Mühendislik Dergisi 14, sy. 3 (Kasım 2024): 64-73.
EndNote Aslay SE (01 Kasım 2024) Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini. Karaelmas Fen ve Mühendislik Dergisi 14 3 64–73.
IEEE S. E. Aslay, “Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini”, Karaelmas Fen ve Mühendislik Dergisi, c. 14, sy. 3, ss. 64–73, 2024.
ISNAD Aslay, Semi Emrah. “Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi Ile Sözleşme Bedeli Tahmini”. Karaelmas Fen ve Mühendislik Dergisi 14/3 (Kasım 2024), 64-73.
JAMA Aslay SE. Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini. Karaelmas Fen ve Mühendislik Dergisi. 2024;14:64–73.
MLA Aslay, Semi Emrah. “Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi Ile Sözleşme Bedeli Tahmini”. Karaelmas Fen Ve Mühendislik Dergisi, c. 14, sy. 3, 2024, ss. 64-73.
Vancouver Aslay SE. Yapım İşlerinde İhale Parametreleri Kullanılarak Makine Öğrenmesi ile Sözleşme Bedeli Tahmini. Karaelmas Fen ve Mühendislik Dergisi. 2024;14(3):64-73.