Research Article
BibTex RIS Cite

Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye

Year 2025, Volume: 15 Issue: 1, 146 - 164, 22.04.2025

Abstract

A significant amount of sulfur dioxide (SO2 ) emissions is released from large-scale lignite-fired thermal power plants, impacting air quality in various hotspot regions of Türkiye. Among these areas, Soma stands out because it possesses two power plants, with one being the nation’s oldest thermal facility lacking advanced desulfurization technology. This study employed the Gaussian dispersion model (AERMOD) to predict hourly SO2 concentrations for 2021 in a 50 km × 50 km area using local surface parameters from a reanalysis database instead of relying on the standard surface characteristics from AERSURFACE. The results showed that hourly concentrations exceeded 2148 times during the year at 311 receptors, which the Ministry of Environment, Urbanization, and Climate Change set. Unlike hourly concentrations, the average daily, seasonal, and annual concentrations were below the limit values. Analysis of individual contributions from thermal power plants demonstrated that the highest SO2 concentrations primarily originated from the oldest plant. The prevailing wind direction in the region revealed that pollutant emissions most impacted the study area’s northern, eastern, and northeastern areas. Interestingly, the modeling results revealed that the thermal power plants did not substantially contribute to SO2 concentrations at the air quality monitoring station due to the meteorological and topographic conditions of the region. As a policy recommendation, it is essential to focus on broader regional monitoring strategies and comprehensive emission inventories to ensure effective environmental management and to address potential sources beyond the immediate vicinity of the power plant. In addition, further examination through correlation analyses brought to light that the topographical parameters influencing the dispersion of annual average SO2 concentrations exhibited distinct variations across regions, exerting varying degrees of the correlation coefficient.

References

  • Adebayo-Ojo, TC., Wichmann, J., Arowosegbe, OO., Probst-Hensch, N., Schindler, C., Künzli, N. 2022. Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006-2015. Int. J. Environ. Res. Public Health, 30(13):8078. doi: 10.3390/ijerph19138078.
  • Akyuz, E., Kaynak, B. 2019. Use of dispersion model and satellite SO2 retrievals for environmental impact assessment of coal-fired power plants. Sci. Total Environ., 689:808–819. https://doi.org/10.1016/j.scitotenv.2019.06.464
  • Cekinir, S., Ozgener, O., Ozgener, L. 2022. Türkiye’s energy projection for 2050. Renew Energy Focus, 43:93–116. https://doi.org/10.1016/j.ref.2022.09.003
  • Demirarslan, KO., Yener, İ. 2022. Investigation of total suspended particulate matter dispersion from quarries in Artvin, Türkiye, using AERMOD and its relationship with topography. Air Qual. Atmos. Health, 15:2313–2327. https://doi.org/10.1007/s11869-022-01253-5
  • Doost, ZE., Dehghani, S., Samaei, MR., Arabzadeh, M., Baghapour, MA., Hashemi, H., Oskoei, V., Mohammadpour, A., De Marcoc, A. 2023. Dispersion of SO2 emissions in a gas refinery by AERMOD modeling and human health risk: a case study in the Middle East. Int. J. Environ. Health Res., 34(2):1227-1240. doi: 10.1080/09603123.2023.2165044
  • EEA (European Environment Agency) 2019. EMEP/EEA air pollutant inventory guidebook, Energy industries, Combustion in energy and transformation industries, 116 p.
  • EPİAŞ 2022. Transparency Platform. https://seffaflik.epias.com.tr/transparency/index.xhtml.
  • Firatlı, E. 2016. Determination of Large-scale SO2 Point Sources in Türkiye Using Satellite Retrievals. Master Thesis, Istanbul Technical University, 103 p.
  • GDM (General Directory of Meteorology) 2022. Meteorological Data for Soma station in 2021.
  • Gibson, MD., Kundu, S., Satish, M. 2013. Dispersion model evaluation of PM2.5, NOX and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Pollut. Res., 4:157–167. https://doi.org/10.5094/APR.2013.016
  • Gündoğdu, S. 2020. Comparison of static MLP and dynamic NARX neural networks for forecasting of atmospheric PM10 and SO2 concentrations in an industrial site of Türkiye. Environ. Forensics, 21:363–374. https://doi.org/10.1080/15275922.2020.1771637
  • Hadlocon, LS., Zhao, LY., Bohrer, G., Kenny, W., Garrity, SR., Wang, J., Wyslouzil, B., Upadhyay, J. 2015. Modeling of particulate matter dispersion from a poultry facility using AERMOD. J. Air Waste Manag. Assoc., 65:206–217. https://doi.org/10.1080/10962247.2014.986306
  • Haq, A ul., Nadeem, Q., Farooq, A., Irfan, N., Ahmad, M., Ali, MR. 2019. Assessment of AERMOD modeling system for application in complex terrain in Pakistan. Atmos, Pollut. Res., 10:1492–1497. https://doi.org/10.1016/j.apr.2019.04.006
  • Hesami Arani, M., Jaafarzadeh, N., Moslemzadeh, M., Rezvani Ghalhari, M., Bagheri Arani, S., Mohammadzadeh, M. 2021. Dispersion of NO2 and SO2 pollutants in the rolling industry with AERMOD model: a case study to assess human health risk. J Environ. Health Sci Eng., 19(2):1287-1298. doi: 10.1007/s40201-021-00686-x
  • Hidro-Gen Energy 2015. Environmental Impact Assessment Report of Project of Soma Thermal Power Plant, Ankara, 2148 p.
  • Kakosimos, KE., Assael, MJ., Katsarou, AS. 2011. Application and evaluation of AERMOD on the assessment of particulate pollution caused by industrial activities in the Greater Thessaloniki area. Environ. Technol., 32:6, 593-608, doi: 10.1080/09593330.2010.506491
  • Karadag, A. 2012. Changing environment and urban identity following open-cast mining and thermic power plant in Türkiye: Case of Soma. Environ. Monit. Assess., 184:1617–1632. https://doi.org/10.1007/s10661-011-2065-z
  • Khaniabadi, YO., Daryanoosh, SM., Hopke, PK., Ferrante, M., De Marco, A., Sicard, P., Conti, GO., Goudarzi, G., Basiri, H., Mohammadi, MJ. 2017. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ Res., 156:683–687. doi:10.1016/j.envres.2017.04.028
  • Kolin 2023. Kolin energy, https://www.kolin.com.tr/en/kologlu-holding/energy
  • Mbiaké R, Mfoumou E, Wakata AB, Ndjeuna, E. Djamen, JR., Kaze Leduc, R., Bobda, C. 2017. Atmospheric Dispersion Modeling of the Emissions from the Logbaba Thermal Power Plant, Douala-Cameroon. Open J Air Pollut 06:117–134. https://doi.org/10.4236/ojap.2017.64010
  • Mentese, S., Mirici, NA., Elbir, T., Tuna Tuygun, G., Bakar, C., Tatman Otkun, M., Oymak, S. 2020. A comprehensive assessment of ambient air quality in Çanakkale city: Emission inventory, air quality monitoring, source apportionment, and respiratory health indicators. Atmos. Pollut. Res., 11:2282–2296. https://doi.org/10.1016/j.apr.2020.07.005
  • MoEUCC (Ministry of Environmental, Urbanization, and Climate Change) 2008. Air Quality Assessment and Management Regulation, Number:26898.
  • Mousavi, S.S., Goudarzi, G., Sabzalipour, S., Mohammadi Rouzbahani, M., Mobarak Hassan, E. 2021. An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD. Environ. Sci. Pollut Res. 28: 56996–57008. https://doi.org/10.1007/s11356-021-14493-2
  • MPDoMEUCC (Manisa Provincial Directories of the Ministry of Environment, Urbanization, and Climate Change) 2021. Environmental Status Report of Manisa Province, https://webdosya.csb.gov.tr/db/ced/icerikler/2020_man-sa_-cdr-20210817131706.pdf.
  • Newell, K., Kartsonaki, C., Lam, KBH., Kurmi, OP. 2017. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Planet Heal., 1:360–367. https://doi.org/10.1016/S2542-5196(17)30166-3
  • Orellano, P., Reynoso, J., Quaranta, N. 2021. Short-term exposure to sulphur dioxide (SO2) and all-cause and respiratory mortality: A systematic review and meta-analysis. Environ Int., 150:106434. doi: 10.1016/j.envint.2021.106434
  • Siahpour, G., Jozi, SA., Orak, N., Fathian, H., Dashti, S. 2022. Estimation of environmental pollutants using the AERMOD model in Shazand thermal power plant, Arak, Iran. Toxin Reviews, 41(4): 1269-1279. doi: 10.1080/15569543.2021.2004429
  • Soma Thermal Power Plant 2015. http://www.somatermik.com.tr/Tr/kurumsal.
  • TURKSTAT (Turkish Statistical Institute) 2022. Population. https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1.
  • Tuygun, GT., Altuğ, H., Elbir, T., Gaga, EE. 2017. Modeling of air pollutant concentrations in an industrial region of Türkiye. Environ. Sci. Pollut. Res., 24:8230–8241. https://doi.org/10.1007/s11356-017-8492-9
  • U.S. EPA (U.S. Environmental Protection Agency) 2022. AERMOD user guide, User's Guide for the AMS/EPA Regulatory Model (AERMOD), https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf.
  • USGS (The United States Geological Survey) 2018. USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30), https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30.
  • Vardar, N., Yumurtaci, Z. 2010. Emissions estimation for lignite-fired power plants in Türkiye. Energy Policy, 38: 243–252. https://doi.org/10.1016/j.enpol.2009.09.011.
  • Vardar, S., Demirel, B., Onay, TT. 2022. Impacts of coal-fired power plants for energy generation on environment and future implications of energy policy for Türkiye. Environ. Sci. Pollut. Res., 29:40302–40318. https://doi.org/10.1007/s11356-022-19786-8
  • Vu, KH., Nguyen, HTT., Nguyen, TT., Ho, BQ. 2022. Application TAPM-AERMOD system model to study impacts of thermal power plants in SouthEast and SouthWest areas to the air quality of HCMC: current status and according to Vietnam power planning VII toward 2030. IOP Conf. Ser. Earth. Environ. Sci. 964:. https://doi.org/10.1088/1755-1315/964/1/012024
  • Wang, Z., An, C., Lee, K., Owens, E., Boufadel, M., Feng, Q. 2022. Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada. J Environ. Manage., 301:113913. https://doi.org/10.1016/j.jenvman.2021.113913
  • WHO 2000. Air quality guidelines for Europe, 2nd ed. Copenhagen, World Health Organization Regional Office for Europe, 2000 (WHO Regional Publications, European Series No. 91).
  • WHO 2021. WHO Global Air Quality Guidelines, Particulate matter (PM10 and PM2.5), ozone, nitrogen oxide, sulphur dioxide, and carbon monoxide. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf.
  • Yassin, MF., Al-Awadhi, MM. 2011. Impact of sulfur dioxide emissions of power stations on ambient air quality. Environ Eng Sci 28:469–475. https://doi.org/10.1089/ees.2010.0061
  • Yılmaz, AO. 2009. Present coal potential of Türkiye and coal usage in electricity generation, Energy Sources Part B Econ Plan Policy, 4 :135–144. https://doi.org/10.1080/15567240701232212
  • Zeydan, Ö., Pekkaya, M. 2021. Evaluating air quality monitoring stations in Türkiye by using multi criteria decision making. Atmos. Pollut. Res., 12:101046. https://doi.org/10.1016/j.apr.2021.03.009

Türkiye'nin Yoğun Kirliliğe Sahip Sanayi Bölgesi’ndeki Büyük Kömür Yakıtlı Termik Santrallerden Kaynaklanan SO₂ Konsantrasyonlarının Değerlendirilmesinde Gauss Dağılım Modelinin Uygulanması

Year 2025, Volume: 15 Issue: 1, 146 - 164, 22.04.2025

Abstract

Büyük ölçekli linyit yakıtlı termik santrallerden önemli miktarda kükürt dioksit (SO₂) emisyonu salınmakta ve bu durum Türkiye’nin çeşitli önemli bölgelerinde hava kalitesini etkilemektedir. Bu bölgeler arasında Soma öne çıkmaktadır, çünkü burada biri desülfürizasyon teknolojisine sahip olmayan ülkenin en eski termik santrali olmak üzere iki adet kömür yakan termik santral bulunmaktadır. Bu çalışmada, 2021 yılı için 50 km × 50 km’lik bir alanda saatlik SO₂ konsantrasyonlarını tahmin etmek amacıyla Gauss dağılım modeli (AERMOD) kullanılmış olup, standart yüzey özellikleri sağlayan AERSURFACE yerine yeniden analiz veri tabanından alınan yerel yüzey parametreleri kullanılmıştır. Sonuçlar, yıl boyunca Çevre, Şehircilik ve İklim Değişikliği Bakanlığı tarafından belirlenen saatlik konsantrasyon sınır değerinin 311 alıcıda 2148 kez aşıldığını göstermiştir. Saatlik konsantrasyonların aksine, ortalama günlük, mevsimlik ve yıllık konsantrasyonlar sınır değerlerin altında kalmıştır. Termik santrallerin bireysel katkılarının analizi, en yüksek SO₂ konsantrasyonlarının esas olarak en eski santralden kaynaklandığını ortaya koymuştur. Bölgedeki hâkim rüzgâr yönü, kirletici emisyonlarının çalışma alanının kuzey, doğu ve kuzeydoğu bölgelerini en çok etkilediğini göstermiştir. Beklenenin aksine, modelleme sonuçları, bölgenin meteorolojik ve topografik koşulları nedeniyle termik santrallerin hava kalitesi izleme istasyonundaki SO₂ konsantrasyonlarına önemli ölçüde katkıda bulunmadığını ortaya koymuştur. Ayrıca, korelasyon analizleri ile yapılan daha ileri incelemeler, yıllık ortalama SO₂ konsantrasyonlarının dağılımını etkileyen topografik parametrelerin bölgeler arasında belirgin farklılıklar gösterdiğini ve farklı derecelerde korelasyon katsayısına sahip olduğunu gözler önüne sermiştir.

References

  • Adebayo-Ojo, TC., Wichmann, J., Arowosegbe, OO., Probst-Hensch, N., Schindler, C., Künzli, N. 2022. Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006-2015. Int. J. Environ. Res. Public Health, 30(13):8078. doi: 10.3390/ijerph19138078.
  • Akyuz, E., Kaynak, B. 2019. Use of dispersion model and satellite SO2 retrievals for environmental impact assessment of coal-fired power plants. Sci. Total Environ., 689:808–819. https://doi.org/10.1016/j.scitotenv.2019.06.464
  • Cekinir, S., Ozgener, O., Ozgener, L. 2022. Türkiye’s energy projection for 2050. Renew Energy Focus, 43:93–116. https://doi.org/10.1016/j.ref.2022.09.003
  • Demirarslan, KO., Yener, İ. 2022. Investigation of total suspended particulate matter dispersion from quarries in Artvin, Türkiye, using AERMOD and its relationship with topography. Air Qual. Atmos. Health, 15:2313–2327. https://doi.org/10.1007/s11869-022-01253-5
  • Doost, ZE., Dehghani, S., Samaei, MR., Arabzadeh, M., Baghapour, MA., Hashemi, H., Oskoei, V., Mohammadpour, A., De Marcoc, A. 2023. Dispersion of SO2 emissions in a gas refinery by AERMOD modeling and human health risk: a case study in the Middle East. Int. J. Environ. Health Res., 34(2):1227-1240. doi: 10.1080/09603123.2023.2165044
  • EEA (European Environment Agency) 2019. EMEP/EEA air pollutant inventory guidebook, Energy industries, Combustion in energy and transformation industries, 116 p.
  • EPİAŞ 2022. Transparency Platform. https://seffaflik.epias.com.tr/transparency/index.xhtml.
  • Firatlı, E. 2016. Determination of Large-scale SO2 Point Sources in Türkiye Using Satellite Retrievals. Master Thesis, Istanbul Technical University, 103 p.
  • GDM (General Directory of Meteorology) 2022. Meteorological Data for Soma station in 2021.
  • Gibson, MD., Kundu, S., Satish, M. 2013. Dispersion model evaluation of PM2.5, NOX and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Pollut. Res., 4:157–167. https://doi.org/10.5094/APR.2013.016
  • Gündoğdu, S. 2020. Comparison of static MLP and dynamic NARX neural networks for forecasting of atmospheric PM10 and SO2 concentrations in an industrial site of Türkiye. Environ. Forensics, 21:363–374. https://doi.org/10.1080/15275922.2020.1771637
  • Hadlocon, LS., Zhao, LY., Bohrer, G., Kenny, W., Garrity, SR., Wang, J., Wyslouzil, B., Upadhyay, J. 2015. Modeling of particulate matter dispersion from a poultry facility using AERMOD. J. Air Waste Manag. Assoc., 65:206–217. https://doi.org/10.1080/10962247.2014.986306
  • Haq, A ul., Nadeem, Q., Farooq, A., Irfan, N., Ahmad, M., Ali, MR. 2019. Assessment of AERMOD modeling system for application in complex terrain in Pakistan. Atmos, Pollut. Res., 10:1492–1497. https://doi.org/10.1016/j.apr.2019.04.006
  • Hesami Arani, M., Jaafarzadeh, N., Moslemzadeh, M., Rezvani Ghalhari, M., Bagheri Arani, S., Mohammadzadeh, M. 2021. Dispersion of NO2 and SO2 pollutants in the rolling industry with AERMOD model: a case study to assess human health risk. J Environ. Health Sci Eng., 19(2):1287-1298. doi: 10.1007/s40201-021-00686-x
  • Hidro-Gen Energy 2015. Environmental Impact Assessment Report of Project of Soma Thermal Power Plant, Ankara, 2148 p.
  • Kakosimos, KE., Assael, MJ., Katsarou, AS. 2011. Application and evaluation of AERMOD on the assessment of particulate pollution caused by industrial activities in the Greater Thessaloniki area. Environ. Technol., 32:6, 593-608, doi: 10.1080/09593330.2010.506491
  • Karadag, A. 2012. Changing environment and urban identity following open-cast mining and thermic power plant in Türkiye: Case of Soma. Environ. Monit. Assess., 184:1617–1632. https://doi.org/10.1007/s10661-011-2065-z
  • Khaniabadi, YO., Daryanoosh, SM., Hopke, PK., Ferrante, M., De Marco, A., Sicard, P., Conti, GO., Goudarzi, G., Basiri, H., Mohammadi, MJ. 2017. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ Res., 156:683–687. doi:10.1016/j.envres.2017.04.028
  • Kolin 2023. Kolin energy, https://www.kolin.com.tr/en/kologlu-holding/energy
  • Mbiaké R, Mfoumou E, Wakata AB, Ndjeuna, E. Djamen, JR., Kaze Leduc, R., Bobda, C. 2017. Atmospheric Dispersion Modeling of the Emissions from the Logbaba Thermal Power Plant, Douala-Cameroon. Open J Air Pollut 06:117–134. https://doi.org/10.4236/ojap.2017.64010
  • Mentese, S., Mirici, NA., Elbir, T., Tuna Tuygun, G., Bakar, C., Tatman Otkun, M., Oymak, S. 2020. A comprehensive assessment of ambient air quality in Çanakkale city: Emission inventory, air quality monitoring, source apportionment, and respiratory health indicators. Atmos. Pollut. Res., 11:2282–2296. https://doi.org/10.1016/j.apr.2020.07.005
  • MoEUCC (Ministry of Environmental, Urbanization, and Climate Change) 2008. Air Quality Assessment and Management Regulation, Number:26898.
  • Mousavi, S.S., Goudarzi, G., Sabzalipour, S., Mohammadi Rouzbahani, M., Mobarak Hassan, E. 2021. An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD. Environ. Sci. Pollut Res. 28: 56996–57008. https://doi.org/10.1007/s11356-021-14493-2
  • MPDoMEUCC (Manisa Provincial Directories of the Ministry of Environment, Urbanization, and Climate Change) 2021. Environmental Status Report of Manisa Province, https://webdosya.csb.gov.tr/db/ced/icerikler/2020_man-sa_-cdr-20210817131706.pdf.
  • Newell, K., Kartsonaki, C., Lam, KBH., Kurmi, OP. 2017. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Planet Heal., 1:360–367. https://doi.org/10.1016/S2542-5196(17)30166-3
  • Orellano, P., Reynoso, J., Quaranta, N. 2021. Short-term exposure to sulphur dioxide (SO2) and all-cause and respiratory mortality: A systematic review and meta-analysis. Environ Int., 150:106434. doi: 10.1016/j.envint.2021.106434
  • Siahpour, G., Jozi, SA., Orak, N., Fathian, H., Dashti, S. 2022. Estimation of environmental pollutants using the AERMOD model in Shazand thermal power plant, Arak, Iran. Toxin Reviews, 41(4): 1269-1279. doi: 10.1080/15569543.2021.2004429
  • Soma Thermal Power Plant 2015. http://www.somatermik.com.tr/Tr/kurumsal.
  • TURKSTAT (Turkish Statistical Institute) 2022. Population. https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1.
  • Tuygun, GT., Altuğ, H., Elbir, T., Gaga, EE. 2017. Modeling of air pollutant concentrations in an industrial region of Türkiye. Environ. Sci. Pollut. Res., 24:8230–8241. https://doi.org/10.1007/s11356-017-8492-9
  • U.S. EPA (U.S. Environmental Protection Agency) 2022. AERMOD user guide, User's Guide for the AMS/EPA Regulatory Model (AERMOD), https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf.
  • USGS (The United States Geological Survey) 2018. USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30), https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30.
  • Vardar, N., Yumurtaci, Z. 2010. Emissions estimation for lignite-fired power plants in Türkiye. Energy Policy, 38: 243–252. https://doi.org/10.1016/j.enpol.2009.09.011.
  • Vardar, S., Demirel, B., Onay, TT. 2022. Impacts of coal-fired power plants for energy generation on environment and future implications of energy policy for Türkiye. Environ. Sci. Pollut. Res., 29:40302–40318. https://doi.org/10.1007/s11356-022-19786-8
  • Vu, KH., Nguyen, HTT., Nguyen, TT., Ho, BQ. 2022. Application TAPM-AERMOD system model to study impacts of thermal power plants in SouthEast and SouthWest areas to the air quality of HCMC: current status and according to Vietnam power planning VII toward 2030. IOP Conf. Ser. Earth. Environ. Sci. 964:. https://doi.org/10.1088/1755-1315/964/1/012024
  • Wang, Z., An, C., Lee, K., Owens, E., Boufadel, M., Feng, Q. 2022. Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada. J Environ. Manage., 301:113913. https://doi.org/10.1016/j.jenvman.2021.113913
  • WHO 2000. Air quality guidelines for Europe, 2nd ed. Copenhagen, World Health Organization Regional Office for Europe, 2000 (WHO Regional Publications, European Series No. 91).
  • WHO 2021. WHO Global Air Quality Guidelines, Particulate matter (PM10 and PM2.5), ozone, nitrogen oxide, sulphur dioxide, and carbon monoxide. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf.
  • Yassin, MF., Al-Awadhi, MM. 2011. Impact of sulfur dioxide emissions of power stations on ambient air quality. Environ Eng Sci 28:469–475. https://doi.org/10.1089/ees.2010.0061
  • Yılmaz, AO. 2009. Present coal potential of Türkiye and coal usage in electricity generation, Energy Sources Part B Econ Plan Policy, 4 :135–144. https://doi.org/10.1080/15567240701232212
  • Zeydan, Ö., Pekkaya, M. 2021. Evaluating air quality monitoring stations in Türkiye by using multi criteria decision making. Atmos. Pollut. Res., 12:101046. https://doi.org/10.1016/j.apr.2021.03.009
There are 41 citations in total.

Details

Primary Language English
Subjects Air Pollution Modelling and Control
Journal Section Research Articles
Authors

Gizem Tuna Tuygun 0000-0003-3001-1360

Publication Date April 22, 2025
Submission Date November 12, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Tuna Tuygun, G. (2025). Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye. Karaelmas Fen Ve Mühendislik Dergisi, 15(1), 146-164. https://doi.org/10.7212/karaelmasfen.1583783
AMA Tuna Tuygun G. Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye. Karaelmas Fen ve Mühendislik Dergisi. April 2025;15(1):146-164. doi:10.7212/karaelmasfen.1583783
Chicago Tuna Tuygun, Gizem. “Application of a Gaussian Dispersion Model for Assessing SO2 Concentrations from Major Coal-Fired Power Plants in the Highly Polluted Industrial Region of Türkiye”. Karaelmas Fen Ve Mühendislik Dergisi 15, no. 1 (April 2025): 146-64. https://doi.org/10.7212/karaelmasfen.1583783.
EndNote Tuna Tuygun G (April 1, 2025) Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye. Karaelmas Fen ve Mühendislik Dergisi 15 1 146–164.
IEEE G. Tuna Tuygun, “Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye”, Karaelmas Fen ve Mühendislik Dergisi, vol. 15, no. 1, pp. 146–164, 2025, doi: 10.7212/karaelmasfen.1583783.
ISNAD Tuna Tuygun, Gizem. “Application of a Gaussian Dispersion Model for Assessing SO2 Concentrations from Major Coal-Fired Power Plants in the Highly Polluted Industrial Region of Türkiye”. Karaelmas Fen ve Mühendislik Dergisi 15/1 (April2025), 146-164. https://doi.org/10.7212/karaelmasfen.1583783.
JAMA Tuna Tuygun G. Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:146–164.
MLA Tuna Tuygun, Gizem. “Application of a Gaussian Dispersion Model for Assessing SO2 Concentrations from Major Coal-Fired Power Plants in the Highly Polluted Industrial Region of Türkiye”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 15, no. 1, 2025, pp. 146-64, doi:10.7212/karaelmasfen.1583783.
Vancouver Tuna Tuygun G. Application of a Gaussian dispersion model for assessing SO2 concentrations from major coal-fired power plants in the highly polluted industrial region of Türkiye. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(1):146-64.