Comparative Analysis of Phase Extraction Techniques Used for Detection of Ceramic Surface Defects with Hybrid Optical Imaging System
Year 2025,
Volume: 15 Issue: 3, 12 - 26, 19.11.2025
Duygu Demircan
,
Gülhan Ustabas Kaya
,
Rukiye Uzun Arslan
Abstract
This study employs a hybrid optical imaging system (HOGS) for the high-accuracy detection of surface defects in ceramic materials. Combining lateral shear digital holography and microscopic fringe projection profilometry techniques, this system enables the three-dimensional (3D) visualization and analysis of micro-level defects on surfaces. To extract phase information from the holographic images, three different phase retrieval methods were applied: Continuous Wavelet Transform (CWT), Fourier Transform (FT), and Hilbert Transform (HT). Under the CWT method, the Mexican Hat wavelet used successfully captures surface defects at high resolution, while also visualizing dust and other small particles on the surface. FT, although commonly preferred for detecting defects in specific areas, was found insufficient in providing complete information as some defects spreading across the surface were partially removed during the filtering process. HT, on the other hand, effectively isolated only the areas containing surface defects by eliminating noise sources. The results indicate that the HD technique, when combined with the HOGS system, offers a reliable and efficient solution for automated surface defect detection and quality control processes in the ceramics industry. Based on the findings, the applicability of optical imaging techniques and phase retrieval methods for detecting micro-level defects on ceramic surfaces has been evaluated, introducing a new approach in this field.
Thanks
We would like to thank "ISV Saniter Seramik Sanayi A.Ş." for contributing to the experimental studies of this article by supplying ceramic materials containing various defect surfaces.
References
-
Al-Sayed, SR., Youssef, D. 2024. Surface Quality Evaluation Through New Optical İmaging System-Based Objective Speckle For Additive Manufactured Titanium Samples. Additive Manufacturing, 94:1-14. DOI:10.1016/j.addma.2024.104475
-
Apostol, D., Sima, A., Logofătu, PC., Garoi, F., Damian, V., Nascov, V., Iordache, I. 2007. Fourier transform digital holography. ROMOPTO 2006: Eighth Conference on Optics, SPIE. pp. 539-544, Romania. DOI:10.1117/12.756836
Bracewell, RN. 1989. The fourier transform. Scientific American, 260(6):86-95.
-
Bilgehan, B., Kavalcıoğlu, C. 2020. Continuous wavelet transform (CWT) based filtering method for treating type 1 diabetes with continuous glucose monitoring (CGM) signals. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2):581-594. DOI:10.17341/gazimmfd.492052
-
Chen, L., Cikalova, U., Bendjus, B., Muench, S., Roellig, M. 2020. Characterization of ceramics based on laser speckle photometry. Journal of Sensors and Sensor Systems, 9(2):345-354. DOI:10.5194/jsss-9-345-2020
Chen, X., Zhang, Y., Lin, L., Wang, J., Ni, J. 2021. Efficient anti-glare ceramic decals defect detection by ıncorporating homomorphic filtering. Computer Systems Science & Engineering, 36(3): 551-564. DOI: 10.32604/csse.2021.014495
-
Demircan, D., Ustabas Kaya, G., Uzun Arslan, R. 2024. Performance of using continuous wavelet transform in detecting ceramic surface defects imaged with hybrid optical imaging system. 5th International Conference on Advanced Engineering Technologies, pp. 86-89, Turkey
-
Ennos, AE. 1975. Speckle interferometry: Laser speckle and related phenomena, Heidelberg Springer, Berlin, 253 pp.
-
Hang, J., Sun, H., Yu, X., Rodríguez-Andina, JJ., Yang, X. 2022. Surface defect detection in sanitary ceramics based on lightweight object detection network. IEEE Open Journal of the Industrial Electronics Society, 3:473-483. DOI: 10.1109/OJIES.2022.3193572
-
Hang, J., Yang, X., Ye, C. 2025. Image style transfer-based data augmentation for sanitary ceramic defect detection. IEEE Transactions on Instrumentation and Measurement, 74:1-10, DOI: 10.1109/TIM.2025.3547074
Hu, Y., Chen, Q., Feng, S., Zuo, C. 2020. Microscopic fringe projection profilometry: a review. Optics and Lasers in Engineering, 135:1-17. DOI: 10.1016/j.optlaseng.2020.106192
-
Kreis, T. 2006. Handbook of holographic ınterferometry: Optical and digital methods. John Wiley & Sons, Germany, 554 pp.
-
Liu, YW. 2012. Hilbert transform and applications - Fourier Transform Applications. InTech, China, 300 pp.
Liu, Y., Zhou, B., Yang, X. 2021. Wavelet analysis‐based texture analysis of ceramic surface images. Advances in Mathematical Physics, 2021:1-11. DOI:10.1155/2021/1745135
-
Luan, G., Shan, M., Zhong, Z., Xia, B. 2020. Fast phase reconstruction in off-axis digital holography with zero-order term suppression. Optica Applicata, 50(3):425-432. DOI:10.37190/oa200308
-
Mertz, J. 2019. Introduction to optical microscopy. Cambridge University Press, UK, 462 pp.
-
Mustafi, S., Latychevskaia, T. 2023. Fourier transform holography: a lensless imaging technique, its principles and applications. Photonics, 10:1-28.DOI:10.3390/photonics10020153
-
Rastogi, PK. 2013. Holographic ınterferometry: principles and methods. Heidelberg Springer, Berlin, 329 pp.
Salvi, J., Fernandez, S., Pribanic, T., Llado, X. 2010. A state of the art in structured light patterns for surface profilometry. Pattern Recognition, 43(8):2666-2680. DOI:10.1016/j.patcog.2010.03.004
Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M., Garcia-Sucerquia, J. 2014. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Applied Optics, 53(10):2058-2066. DOI:10.1364/AO.53.002058
-
Seo, KB., Kim, BM., Kim, ES. 2014. Digital holographic microscopy based on a modified lateral shearing ınterferometer for three-dimensional visual inspection of nanoscale defects on transparent objects. Nanoscale Research Letters, 9:1-14. DOI:10.1186/1556-276X-9-471
-
Schnars, U., Falldorf, C., Watson, J., Jüptner, W. 2015. Digital holography, digital holography and wavefront sensing. Heidelberg Springer, Berlin, 68 pp.
-
Sifuzzaman, M., Islam, MR., Ali, MZ. 2009. Application of wavelet transform and ıts advantages compared to fourier transform. Journal of Physical Sciences, 13:121-134.
-
Sioma, A. 2020. Automated control of surface defects on ceramic tiles using 3d ımage analysis. Materials, 13(5):1250. DOI:10.3390/ma13051250
-
Takeda, M., Mutoh, K. 1983. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22(24):3977-3982. DOI:10.1364/AO.22.003977
-
Ustabas Kaya, G. 2024. A novel hybrid optical imaging sensor for early stage short-circuit fault diagnosis in printed circuit boards. Traitement du Signal, 41(1):531-542. DOI:10.18280/ts.41014
-
Ustabas Kaya, G. 2023. Development of hybrid optical sensor based on deep learning to detect and classify the micro-size defects in printed circuit board. Measurement, 206:1-13. DOI: 10.1016/j.measurement.2022.112247
-
Ustabas Kaya, G., Kocabas, S., Kartal, S., Kaya, H., Tekin, IO., Tigli Aydin, RS., Kutoglu, SH. 2022. Detection of airborne nanoparticles with lateral shearing digital holographic microscopy. Optics and Lasers in Engineering, 151:1-16. DOI:10.1016/j.optlaseng.2021.106934
-
Wang, S., Wang, J., Zhu, T. 2015. High-dimensional resolution enhancement in the continuous wavelet transform domain. GeoConvention 2015: New Horizons. pp. 1-5, Calgary, AB Canada
-
Wang, X. A., An, J., Mei, Y., Chen, X., Wu, M. 2022. Surface defect detection of sanitary ceramic product utilizing high-resolution image on two different scales. 2022 34th Chinese Control and Decision Conference (CCDC), IEEE. pp. 4332-4337, Hefei, China. DOI: 10.1109/CCDC55256.2022.10034392
-
Watanabe, Y. 2016. High-speed optical 3d sensing and ıts applications. Advanced Optical Technologies, 5(5-6):367-376. DOI:10.1515/aot-2016-0047
-
Yaroslavsky, L. 2004. Digital holography and digital signal processing: principles, methods, algorithms. Kluwer Academic Publishers Group, MA, USA, 584 pp.
-
Yi, J., Mao, X., Chen, L., Xue, Y., Compare, A. 2014. Illuminant direction estimation for a single image based on local region complexity analysis and average gray value. Applied Optics, 53(2):226-236. DOI:10.1364/AO.53.000226
-
Zhang, H., Peng, L., Yu, S., Qu, W. 2021. Detection of surface defects in ceramic tiles with complex texture. IEEE Access, 9:92788-92797. DOI:10.1109/ACCESS.2021.3093090
-
Zhao, Z. 2021. Review of non-destructive testing methods for defect detection of ceramics. Ceramics International, 47(4):4389–4397. DOI:10.1016/j.ceramint.2020.10.065
-
Zhao, J., Liu, L., Wang, T., Wang, X., Du, X., Hao, R., Liu, J., Zhang, J. 2023. Synchronous phase-shifting ınterference for high precision phase ımaging of objects using common optics. Sensors, 23:1-13. DOI:10.3390/s23094339
Hibrit Optik Görüntüleme Sistemi ile Seramik Yüzey Kusurlarının Tespit Edilmesi için Kullanılan Faz Çıkarma Tekniklerinin Karşılaştırmalı Analizi
Year 2025,
Volume: 15 Issue: 3, 12 - 26, 19.11.2025
Duygu Demircan
,
Gülhan Ustabas Kaya
,
Rukiye Uzun Arslan
Abstract
Bu çalışma, seramik malzemelerde yüzey kusurlarının yüksek doğrulukla tespit edilmesi için hibrit optik görüntüleme sistemini (HOGS) kullanmaktadır. Yanal kesme sayısal holografi ve mikroskobik saçak projeksiyon profilometrisi tekniklerini birleştiren bu sistem, yüzeydeki mikro boyuttaki kusurların üç boyutlu (3B) olarak görüntülenmesini ve analiz edilmesini sağlamaktadır. Holografik görüntülerdeki faz bilgisini çıkarmak için Sürekli Dalgacık Dönüşümü (SDD), Fourier Dönüşümü (FD) ve Hilbert Dönüşümü (HD) olmak üzere üç farklı faz bulma yöntemi uygulanmıştır. SDD yöntemi altında kullanılan Mexican Hat dalgacığı, yüzeydeki kusurları yüksek çözünürlükle yakalarken, aynı zamanda yüzeyde bulunan toz ve diğer küçük parçacıkları da görüntülemektedir. FD, belirli alanlardaki kusurların tespiti için sıklıkla tercih edilse de, filtreleme işlemi sırasında yüzeye yayılan kusurların bir kısmını ortadan kaldırarak tam bir bilgi sunmada yetersiz kalmıştır. HD ise, gürültü kaynaklarını etkili bir şekilde elimine ederek yalnızca yüzey kusurunun bulunduğu alanı izole edebilmiştir. Sonuçlar, HOGS sistemi ile birlikte kullanılan HD tekniğinin, seramik endüstrisinde otomatik yüzey kusur tespiti ve kalite kontrol süreçlerinde güvenilir ve etkili bir çözüm sunduğunu ortaya koymaktadır. Elde edilen bulgular ışığında, optik görüntüleme teknikleri ile faz çıkarma yöntemlerinin seramik yüzeylerdeki mikro düzeydeki kusurların tespitinde uygulanabilirliği değerlendirilmiş ve bu alanda yeni bir yaklaşım sunulmuştur.
Thanks
Çeşitli kusur yüzeylerini içerisinde barındıran seramik malzeme temini ile bu makalenin deneysel çalışmalarına katkıda bulunan "ISV Saniter Seramik Sanayi A.Ş."ye teşekkür ederiz.
References
-
Al-Sayed, SR., Youssef, D. 2024. Surface Quality Evaluation Through New Optical İmaging System-Based Objective Speckle For Additive Manufactured Titanium Samples. Additive Manufacturing, 94:1-14. DOI:10.1016/j.addma.2024.104475
-
Apostol, D., Sima, A., Logofătu, PC., Garoi, F., Damian, V., Nascov, V., Iordache, I. 2007. Fourier transform digital holography. ROMOPTO 2006: Eighth Conference on Optics, SPIE. pp. 539-544, Romania. DOI:10.1117/12.756836
Bracewell, RN. 1989. The fourier transform. Scientific American, 260(6):86-95.
-
Bilgehan, B., Kavalcıoğlu, C. 2020. Continuous wavelet transform (CWT) based filtering method for treating type 1 diabetes with continuous glucose monitoring (CGM) signals. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2):581-594. DOI:10.17341/gazimmfd.492052
-
Chen, L., Cikalova, U., Bendjus, B., Muench, S., Roellig, M. 2020. Characterization of ceramics based on laser speckle photometry. Journal of Sensors and Sensor Systems, 9(2):345-354. DOI:10.5194/jsss-9-345-2020
Chen, X., Zhang, Y., Lin, L., Wang, J., Ni, J. 2021. Efficient anti-glare ceramic decals defect detection by ıncorporating homomorphic filtering. Computer Systems Science & Engineering, 36(3): 551-564. DOI: 10.32604/csse.2021.014495
-
Demircan, D., Ustabas Kaya, G., Uzun Arslan, R. 2024. Performance of using continuous wavelet transform in detecting ceramic surface defects imaged with hybrid optical imaging system. 5th International Conference on Advanced Engineering Technologies, pp. 86-89, Turkey
-
Ennos, AE. 1975. Speckle interferometry: Laser speckle and related phenomena, Heidelberg Springer, Berlin, 253 pp.
-
Hang, J., Sun, H., Yu, X., Rodríguez-Andina, JJ., Yang, X. 2022. Surface defect detection in sanitary ceramics based on lightweight object detection network. IEEE Open Journal of the Industrial Electronics Society, 3:473-483. DOI: 10.1109/OJIES.2022.3193572
-
Hang, J., Yang, X., Ye, C. 2025. Image style transfer-based data augmentation for sanitary ceramic defect detection. IEEE Transactions on Instrumentation and Measurement, 74:1-10, DOI: 10.1109/TIM.2025.3547074
Hu, Y., Chen, Q., Feng, S., Zuo, C. 2020. Microscopic fringe projection profilometry: a review. Optics and Lasers in Engineering, 135:1-17. DOI: 10.1016/j.optlaseng.2020.106192
-
Kreis, T. 2006. Handbook of holographic ınterferometry: Optical and digital methods. John Wiley & Sons, Germany, 554 pp.
-
Liu, YW. 2012. Hilbert transform and applications - Fourier Transform Applications. InTech, China, 300 pp.
Liu, Y., Zhou, B., Yang, X. 2021. Wavelet analysis‐based texture analysis of ceramic surface images. Advances in Mathematical Physics, 2021:1-11. DOI:10.1155/2021/1745135
-
Luan, G., Shan, M., Zhong, Z., Xia, B. 2020. Fast phase reconstruction in off-axis digital holography with zero-order term suppression. Optica Applicata, 50(3):425-432. DOI:10.37190/oa200308
-
Mertz, J. 2019. Introduction to optical microscopy. Cambridge University Press, UK, 462 pp.
-
Mustafi, S., Latychevskaia, T. 2023. Fourier transform holography: a lensless imaging technique, its principles and applications. Photonics, 10:1-28.DOI:10.3390/photonics10020153
-
Rastogi, PK. 2013. Holographic ınterferometry: principles and methods. Heidelberg Springer, Berlin, 329 pp.
Salvi, J., Fernandez, S., Pribanic, T., Llado, X. 2010. A state of the art in structured light patterns for surface profilometry. Pattern Recognition, 43(8):2666-2680. DOI:10.1016/j.patcog.2010.03.004
Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M., Garcia-Sucerquia, J. 2014. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Applied Optics, 53(10):2058-2066. DOI:10.1364/AO.53.002058
-
Seo, KB., Kim, BM., Kim, ES. 2014. Digital holographic microscopy based on a modified lateral shearing ınterferometer for three-dimensional visual inspection of nanoscale defects on transparent objects. Nanoscale Research Letters, 9:1-14. DOI:10.1186/1556-276X-9-471
-
Schnars, U., Falldorf, C., Watson, J., Jüptner, W. 2015. Digital holography, digital holography and wavefront sensing. Heidelberg Springer, Berlin, 68 pp.
-
Sifuzzaman, M., Islam, MR., Ali, MZ. 2009. Application of wavelet transform and ıts advantages compared to fourier transform. Journal of Physical Sciences, 13:121-134.
-
Sioma, A. 2020. Automated control of surface defects on ceramic tiles using 3d ımage analysis. Materials, 13(5):1250. DOI:10.3390/ma13051250
-
Takeda, M., Mutoh, K. 1983. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22(24):3977-3982. DOI:10.1364/AO.22.003977
-
Ustabas Kaya, G. 2024. A novel hybrid optical imaging sensor for early stage short-circuit fault diagnosis in printed circuit boards. Traitement du Signal, 41(1):531-542. DOI:10.18280/ts.41014
-
Ustabas Kaya, G. 2023. Development of hybrid optical sensor based on deep learning to detect and classify the micro-size defects in printed circuit board. Measurement, 206:1-13. DOI: 10.1016/j.measurement.2022.112247
-
Ustabas Kaya, G., Kocabas, S., Kartal, S., Kaya, H., Tekin, IO., Tigli Aydin, RS., Kutoglu, SH. 2022. Detection of airborne nanoparticles with lateral shearing digital holographic microscopy. Optics and Lasers in Engineering, 151:1-16. DOI:10.1016/j.optlaseng.2021.106934
-
Wang, S., Wang, J., Zhu, T. 2015. High-dimensional resolution enhancement in the continuous wavelet transform domain. GeoConvention 2015: New Horizons. pp. 1-5, Calgary, AB Canada
-
Wang, X. A., An, J., Mei, Y., Chen, X., Wu, M. 2022. Surface defect detection of sanitary ceramic product utilizing high-resolution image on two different scales. 2022 34th Chinese Control and Decision Conference (CCDC), IEEE. pp. 4332-4337, Hefei, China. DOI: 10.1109/CCDC55256.2022.10034392
-
Watanabe, Y. 2016. High-speed optical 3d sensing and ıts applications. Advanced Optical Technologies, 5(5-6):367-376. DOI:10.1515/aot-2016-0047
-
Yaroslavsky, L. 2004. Digital holography and digital signal processing: principles, methods, algorithms. Kluwer Academic Publishers Group, MA, USA, 584 pp.
-
Yi, J., Mao, X., Chen, L., Xue, Y., Compare, A. 2014. Illuminant direction estimation for a single image based on local region complexity analysis and average gray value. Applied Optics, 53(2):226-236. DOI:10.1364/AO.53.000226
-
Zhang, H., Peng, L., Yu, S., Qu, W. 2021. Detection of surface defects in ceramic tiles with complex texture. IEEE Access, 9:92788-92797. DOI:10.1109/ACCESS.2021.3093090
-
Zhao, Z. 2021. Review of non-destructive testing methods for defect detection of ceramics. Ceramics International, 47(4):4389–4397. DOI:10.1016/j.ceramint.2020.10.065
-
Zhao, J., Liu, L., Wang, T., Wang, X., Du, X., Hao, R., Liu, J., Zhang, J. 2023. Synchronous phase-shifting ınterference for high precision phase ımaging of objects using common optics. Sensors, 23:1-13. DOI:10.3390/s23094339