Research Article
BibTex RIS Cite

Ayrık Olmayan Sınır Koşullarına Sahip Ters Nodal Problem İçin Teklik Teoremi

Year 2025, Volume: 15 Issue: 3, 27 - 32, 19.11.2025

Abstract

Bu araştırma, sonlu bir aralıkta, aralık içinde süreksizliğe sahip ikinci dereceden diferansiyel operatörler için ters nodal problemi araştırmaktadır. Daha önce yapılan benzer çalışmalarda süreksizlik noktası parçanın orta noktası iken benzer sonuçlar elde edilmiştir. Parçanın orta noktası süreksizlik noktası olarak alındığında özdeğer ve özfonksiyonların asimptotik ifadelerinin, literatürde bilinen klasik ayrık sınır koşulları ile verilen problemlerin özdeğer ve özfonksiyonlarının asimptotiklerinden pek de farklı olmadığı görülmektedir. Sunulan çalışmada ise verilen ters nodal problemin çözümü için süreksizlik noktalarının tipi belirlenmiştir. R={a_r: a_r=rπ r∈(0,1)∩Q} kümesine ait her a_r süreksizlik noktası için çalışma, ters nodal problemin çözümünün varlığını kanıtlar ve çözümün belirlenmesi için pratik bir yöntem sunar.

References

  • Amirov, RKh. 2006. On Sturm-Liouville operators with discontinuity conditions inside an interval. Journal of Mathematical Analysis and Applications, 317, 163-176. Doi: 10.1016/j.jmaa.2005.11.042
  • Amirov, RKh., Arslantaş, M., Durak, S. 2024. Inverse nodal problem for singular Sturm-Liouville operator on a star graph. Journal of Inverse and Ill-Posed Problems, 32 (1), 1-8. Doi: 10.55730/1300-0098.3262
  • Amirov, RKh., Durak, S. 2024. Inverse nodal problems for singular diffusion equation. Mathematical Methods in the Applied Sciences, 47 (11), 9067-9083. Doi: 10.1002/mma.10060
  • Bellman, R., Cook, K. 1963. Differential-Diffference Equations. New York, Academic Press.
  • Binding, PA., Watson, BA. 2009. An inverse nodal problem for two-parameter Sturm- Liouville systems. Inverse Problems, 25, 19pp. Doi: 10.1088/0266-5611/25/8/085005
  • Browne, PJ., Sleeman, BD. 1996. Inverse nodal problem for Sturm-Liouville equation with eigenparameter depend boundary conditions. Inverse Problems, 12, 377-381. Doi: 10.1088/0266-5611/12/4/002
  • Buterin, SA., Shieh, Ch-T. 2009. Inverse nodal problem for differential pencils. Applied Mathematics Letters, 22, 1240-1247. Doi: 10.1016/j.aml.2009.01.037
  • Buterin, SA., Shieh, Ch-T. 2012. Incomplete inverse spectral and nodal problems for differential pencil. Results Mathematics, 62, 167-179. Doi: 10.1007/s00025-011-0137-6
  • Cheng, YH., Law, CK., Tsay, J. 2000. Remarks on a new inverse nodal problem. Journal of Mathematical Analysis and Applications, 248, 145-155. Doi: 10.1006rjmaa.2000.6878
  • Cheng, YH., Law, CK. 2006. The inverse nodal problem for Hill’s equation. Inverse Problems, 22, 891-901. Doi: 10.1088/0266-5611/22/3/010
  • Currie, S., Watson, BA. 2007. Inverse nodal problems for Sturm-Liouville equations on graphs. Inverse Problems, 23, 2029-2040. Doi: 10.1088/0266-5611/23/5/013
  • Durak, S. 2022. Inverse nodal problem for Sturm-Liouville operator on A star graph with nonequal edges. Turkish Journal of Mathematcics, 46, 2178-2192. Doi: 10.55730/1300-0098.3262
  • Durak, S. 2024. Inverse nodal problem for diffusion operator on a star graph with nonhomogeneous edges. Journal of Inverse and Ill-Posed Problems, 32 (3), 485-496. Doi: 10.1515/jiip-2022-0094
  • Freiling, G., Yurko, VA. 2001. Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers.
  • Guo, YX., Wei, GS. 2013. Inverse problems: Dense nodal subset on an interior subinterval. Journal of Differential Equations, 255, 2002-2017. Doi: 10.1016/j.jde.2013.06.006
  • Hald, OH., McLaughlin, JR. 1989. Solutions of inverse nodal problems. Inverse Problems, 5, 307-347. Doi: 10.1088/0266-5611/5/3/008
  • Jdanovich, BF. 1960. Formulae for the zeros of dirichlet polynomials and quasi-polynomials. Doklady Akademii Nauk SSSR, 135 (8), 1046-1049.
  • Koyunbakan, H., Mosazadeh, S. 2021. Inverse nodal problem for discontinuous Sturm-Liouville operator by new prüfer substitutions. Mathematical Sciences, 15 (4), 387-394. Doi: 10.1007/s40096-021-0383-8
  • Law, CK., Yang, CF. 1998. Reconstructing the potential function and its derivatives using nodal data. Inverse Problems, 14, 299-312. Doi: 10.1088/0266-5611/14/2/006
  • Law, CK., Tsay, J. 2001. On the well-posedness of the inverse nodal problem. Inverse Problems, 17, 1493-1512. Doi: 10.1088/0266-5611/17/5/317
  • Levin, BYa. 1971. Entire Functions. Moscow: MGU. McLaughlin, JR. 1988. Inverse spectral theory using nodal points as data - a uniqueness result. Journal of Differential Equations, 73, 354-362. Doi: 10.1016/0022-0396(88)90111-8
  • Shen, CL. 1988. On the nodal sets of the eigenfunctions of the string equations. SIAM Journal on Mathematical Analysis, 19, 1419-1424. Doi: 10.1137/0519104
  • Shen, CL., Shieh, CT. 2000. An ınverse nodal problem for vectorial Sturm-Liouville equation. Inverse Problems, 16, 349-356. Doi: 10.1088/0266-5611/16/2/306
  • Shieh, Ch-T., Yurko, VA. 2008. Inverse nodal and ınverse problems for discontinuous boundary value problems. Journal of Mathematical Analysis and Applications, 347, 266-272. Doi: 10.1016/j.jmaa.2008.05.097
  • Yang, CF., Yang, X-P. 2011. Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter. Inverse Problems Science and Engineering, 19, 951-961. Doi: 10.1080/17415977.2011.565874
  • Yang, CF. 2013. Direct and ınverse nodal problem for differential pencil with coupled boundary conditions. Inverse Problems in Science and Engineering , 21, 562-584. Doi: 10.1080/17415977.2012.712523
  • Yang, CF. 2013. Inverse nodal problems of discontinuous Sturm-Liouville operator. Journal of Differential Equations, 254, 1992-2014. Doi: 10.1016/j.jde.2012.11.018
  • Yang, CF. 2014. An ınverse problem for a differential pencil using nodal points as data. Israel Journal of Mathematics, 204, 431-446. Doi: 10.1007/s11856-014-1097-9
  • Yang, XF. 1997. A solution of the ınverse nodal problem. Inverse Problems, 13, 203-213. Doi: 10.1088/0266-5611/13/1/016
  • Yang, XF. 2001. A new ınverse nodal problem. Journal of Differential Equations, 169, 633-653. Doi: 10.1006/jdeq.2000.3911
  • Yurko, VA. 2008. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. Journal of Inverse and Ill-Posed Problems, 16, 715-722. Doi: 10.1515/JIIP.2008.044
  • Yurko, VA. 2009. Inverse nodal problems for Sturm-Liouville operators on a star-type graph. Siberian Mathematical Journal, 50, 373-378. Doi: 10.1007/s11202-009-0043-2

Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions

Year 2025, Volume: 15 Issue: 3, 27 - 32, 19.11.2025

Abstract

This research investigates the inverse nodal reconstruction for second-order differential operators on a bounded interval, incorporating discontinuities within that interval. In previous similar studies, when the discontinuity point was at the midpoint of the part, similar results were obtained. When the midpoint of the part is taken as the discontinuity point, it is observed that the asymptotic expressions of the eigenvalues and eigenfunctions do not differ significantly from those of problems with classical separated boundary conditions known in the literature. In the presented study, the type of discontinuity points has been determined for the solution of the given inverse nodal problem. For every discontinuity point a_r belonging to the set R={a_r: a_r=rπ r∈(0,1)∩Q} the study establishes the existence of a solution to the inverse nodal problem and offers a practical method for its determination.

References

  • Amirov, RKh. 2006. On Sturm-Liouville operators with discontinuity conditions inside an interval. Journal of Mathematical Analysis and Applications, 317, 163-176. Doi: 10.1016/j.jmaa.2005.11.042
  • Amirov, RKh., Arslantaş, M., Durak, S. 2024. Inverse nodal problem for singular Sturm-Liouville operator on a star graph. Journal of Inverse and Ill-Posed Problems, 32 (1), 1-8. Doi: 10.55730/1300-0098.3262
  • Amirov, RKh., Durak, S. 2024. Inverse nodal problems for singular diffusion equation. Mathematical Methods in the Applied Sciences, 47 (11), 9067-9083. Doi: 10.1002/mma.10060
  • Bellman, R., Cook, K. 1963. Differential-Diffference Equations. New York, Academic Press.
  • Binding, PA., Watson, BA. 2009. An inverse nodal problem for two-parameter Sturm- Liouville systems. Inverse Problems, 25, 19pp. Doi: 10.1088/0266-5611/25/8/085005
  • Browne, PJ., Sleeman, BD. 1996. Inverse nodal problem for Sturm-Liouville equation with eigenparameter depend boundary conditions. Inverse Problems, 12, 377-381. Doi: 10.1088/0266-5611/12/4/002
  • Buterin, SA., Shieh, Ch-T. 2009. Inverse nodal problem for differential pencils. Applied Mathematics Letters, 22, 1240-1247. Doi: 10.1016/j.aml.2009.01.037
  • Buterin, SA., Shieh, Ch-T. 2012. Incomplete inverse spectral and nodal problems for differential pencil. Results Mathematics, 62, 167-179. Doi: 10.1007/s00025-011-0137-6
  • Cheng, YH., Law, CK., Tsay, J. 2000. Remarks on a new inverse nodal problem. Journal of Mathematical Analysis and Applications, 248, 145-155. Doi: 10.1006rjmaa.2000.6878
  • Cheng, YH., Law, CK. 2006. The inverse nodal problem for Hill’s equation. Inverse Problems, 22, 891-901. Doi: 10.1088/0266-5611/22/3/010
  • Currie, S., Watson, BA. 2007. Inverse nodal problems for Sturm-Liouville equations on graphs. Inverse Problems, 23, 2029-2040. Doi: 10.1088/0266-5611/23/5/013
  • Durak, S. 2022. Inverse nodal problem for Sturm-Liouville operator on A star graph with nonequal edges. Turkish Journal of Mathematcics, 46, 2178-2192. Doi: 10.55730/1300-0098.3262
  • Durak, S. 2024. Inverse nodal problem for diffusion operator on a star graph with nonhomogeneous edges. Journal of Inverse and Ill-Posed Problems, 32 (3), 485-496. Doi: 10.1515/jiip-2022-0094
  • Freiling, G., Yurko, VA. 2001. Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers.
  • Guo, YX., Wei, GS. 2013. Inverse problems: Dense nodal subset on an interior subinterval. Journal of Differential Equations, 255, 2002-2017. Doi: 10.1016/j.jde.2013.06.006
  • Hald, OH., McLaughlin, JR. 1989. Solutions of inverse nodal problems. Inverse Problems, 5, 307-347. Doi: 10.1088/0266-5611/5/3/008
  • Jdanovich, BF. 1960. Formulae for the zeros of dirichlet polynomials and quasi-polynomials. Doklady Akademii Nauk SSSR, 135 (8), 1046-1049.
  • Koyunbakan, H., Mosazadeh, S. 2021. Inverse nodal problem for discontinuous Sturm-Liouville operator by new prüfer substitutions. Mathematical Sciences, 15 (4), 387-394. Doi: 10.1007/s40096-021-0383-8
  • Law, CK., Yang, CF. 1998. Reconstructing the potential function and its derivatives using nodal data. Inverse Problems, 14, 299-312. Doi: 10.1088/0266-5611/14/2/006
  • Law, CK., Tsay, J. 2001. On the well-posedness of the inverse nodal problem. Inverse Problems, 17, 1493-1512. Doi: 10.1088/0266-5611/17/5/317
  • Levin, BYa. 1971. Entire Functions. Moscow: MGU. McLaughlin, JR. 1988. Inverse spectral theory using nodal points as data - a uniqueness result. Journal of Differential Equations, 73, 354-362. Doi: 10.1016/0022-0396(88)90111-8
  • Shen, CL. 1988. On the nodal sets of the eigenfunctions of the string equations. SIAM Journal on Mathematical Analysis, 19, 1419-1424. Doi: 10.1137/0519104
  • Shen, CL., Shieh, CT. 2000. An ınverse nodal problem for vectorial Sturm-Liouville equation. Inverse Problems, 16, 349-356. Doi: 10.1088/0266-5611/16/2/306
  • Shieh, Ch-T., Yurko, VA. 2008. Inverse nodal and ınverse problems for discontinuous boundary value problems. Journal of Mathematical Analysis and Applications, 347, 266-272. Doi: 10.1016/j.jmaa.2008.05.097
  • Yang, CF., Yang, X-P. 2011. Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter. Inverse Problems Science and Engineering, 19, 951-961. Doi: 10.1080/17415977.2011.565874
  • Yang, CF. 2013. Direct and ınverse nodal problem for differential pencil with coupled boundary conditions. Inverse Problems in Science and Engineering , 21, 562-584. Doi: 10.1080/17415977.2012.712523
  • Yang, CF. 2013. Inverse nodal problems of discontinuous Sturm-Liouville operator. Journal of Differential Equations, 254, 1992-2014. Doi: 10.1016/j.jde.2012.11.018
  • Yang, CF. 2014. An ınverse problem for a differential pencil using nodal points as data. Israel Journal of Mathematics, 204, 431-446. Doi: 10.1007/s11856-014-1097-9
  • Yang, XF. 1997. A solution of the ınverse nodal problem. Inverse Problems, 13, 203-213. Doi: 10.1088/0266-5611/13/1/016
  • Yang, XF. 2001. A new ınverse nodal problem. Journal of Differential Equations, 169, 633-653. Doi: 10.1006/jdeq.2000.3911
  • Yurko, VA. 2008. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. Journal of Inverse and Ill-Posed Problems, 16, 715-722. Doi: 10.1515/JIIP.2008.044
  • Yurko, VA. 2009. Inverse nodal problems for Sturm-Liouville operators on a star-type graph. Siberian Mathematical Journal, 50, 373-378. Doi: 10.1007/s11202-009-0043-2
There are 32 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Merve Arslantaş 0000-0002-0493-4551

Publication Date November 19, 2025
Submission Date March 14, 2025
Acceptance Date July 2, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Arslantaş, M. (2025). Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions. Karaelmas Fen Ve Mühendislik Dergisi, 15(3), 27-32. https://doi.org/10.7212/karaelmasfen.1657961
AMA Arslantaş M. Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions. Karaelmas Fen ve Mühendislik Dergisi. November 2025;15(3):27-32. doi:10.7212/karaelmasfen.1657961
Chicago Arslantaş, Merve. “Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions”. Karaelmas Fen Ve Mühendislik Dergisi 15, no. 3 (November 2025): 27-32. https://doi.org/10.7212/karaelmasfen.1657961.
EndNote Arslantaş M (November 1, 2025) Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions. Karaelmas Fen ve Mühendislik Dergisi 15 3 27–32.
IEEE M. Arslantaş, “Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions”, Karaelmas Fen ve Mühendislik Dergisi, vol. 15, no. 3, pp. 27–32, 2025, doi: 10.7212/karaelmasfen.1657961.
ISNAD Arslantaş, Merve. “Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions”. Karaelmas Fen ve Mühendislik Dergisi 15/3 (November2025), 27-32. https://doi.org/10.7212/karaelmasfen.1657961.
JAMA Arslantaş M. Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:27–32.
MLA Arslantaş, Merve. “Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 15, no. 3, 2025, pp. 27-32, doi:10.7212/karaelmasfen.1657961.
Vancouver Arslantaş M. Uniqueness Theorem For Inverse Nodal Problem With Nonseparable Boundary Conditions. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(3):27-32.