Research Article
BibTex RIS Cite

Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi

Year 2025, Volume: 15 Issue: 3, 74 - 94, 19.11.2025

Abstract

Yenilenebilir enerji kaynaklarından olan güneş enerjisi, dünyanın sıfır emisyonlu gelecek hedefi için önde gelen yatırım tercihleri arasında yer almaktadır. Yüzer ve kara fotovoltaik enerji dönüşüm sistemleri, kurulum, bakım, elektriksel verimlilik, çevresel etkiler, maliyet, finansal geri dönüş açısından farklılıklara sahiptir. Yüzer sistemler, fotovoltaik panel taşıma sistemlerinde mekanik stresin azalması, suyun panelleri soğutma etkisi, gölge etkisinin az olması, güneş takip sistemleri kurulumlarının daha kolay olması, yüzey alanı başına daha verimli elektrik üretimi, buharlaşmanın azaltılması ve hidroelektrik santrallerle hibrit çalışma olanağı gibi birçok avantaja sahiptir. Kara sistemleri, yüzer sistemlere göre genellikle daha kolay kurulur, ancak kurulum yapılacak arazinin bulunması artık çok daha zor olmaktadır. Kara sistemlerinde, fotovoltaik panel sıcaklığı ve gölgelenme elektrik enerjisi üretiminde verimliliğin azalmasına neden olmaktadır. Bu çalışmada, literatürde yer alan küresel ölçekte ve Türkiye’deki Kara ve Yüzer sistemlerin simülasyon ve deneysel araştırmaları kıyaslanmıştır. PVsyst simülasyon programında, Elâzığ-Hazar Gölü üzerinde yüzey alanının 0.1% (76000 m2)’lik kısmında modelleme yapılmıştır. Simülasyon sonucunda, 14⁰ eğim açısıyla göl yüzeyine yerleştirilen 9672 adet fotovoltaik panel ile 11997 MWh elektrik üretilmiştir. 37⁰ eğim açılı fotovoltaik panellerden oluşan kara sistemlerine göre elektrik üretim verimliliği 2.84% artmıştır. Bununla birlikte yıllık CO2 emisyonun 143.8 ton azalmakta ve 25330 m3 su buharlaşmasının önüne geçilmektedir. Çalışma kapsamı, mikro ölçekte belirlenen su yüzey alanının coğrafi özelliklerine bağlı olarak çevrelenmiştir. Elde edilen bulgular ve materyallerle farklı bölgeler için de benzer yöntemler kullanılarak analiz yapılması mümkün olmaktadır.

References

  • Antonio, M., Galdino, E., Maria, M., Olivieri, A. (2017). Some Remarks about the Deployment of Floating PV Systems in Brazil. Journal of Electrical Engineering, 5, 10–19. https://doi.org/10.17265/2328-2223/2017.01.002
  • ArcGIS 10.8 (10.8). (2025).
  • Bontempo Scavo, F., Tina, GM., Gagliano, A., Nižetić, S. (2021). An assessment study of evaporation rate models on a water basin with floating photovoltaic plants. International Journal of Energy Research, 45(1), 167–188. https://doi.org/10.1002/er.5170
  • Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., Tina, GM. (2012). Floating tracking cooling concentrating (FTCC) systems. Conference Record of the IEEE Photovoltaic Specialists Conference, 514–519. https://doi.org/10.1109/PVSC.2012.6317668
  • Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., Tina, GM. (2019). Integration of PV floating with hydroelectric power plants. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01918
  • Chanchangi, YN., Ghosh, A., Baig, H., Sundaram, S., Mallick, TK. (2021). Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renewable Energy, 180, 874–892. https://doi.org/10.1016/J.RENENE.2021.08.090
  • Chanchangi, YN., Ghosh, A., Sundaram, S., Mallick, TK. (2021). Angular dependencies of soiling loss on photovoltaic performance in Nigeria. Solar Energy, 225, 108–121. https://doi.org/10.1016/J.SOLENER.2021.07.001
  • Chen, YK, Kirkerud, JG, Bolkesjø, TF. (2022). Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios. Applied Energy, 310, 118557. https://doi.org/10.1016/J.APENERGY.2022.118557
  • Choi, YK., Choi, WS., Lee, JH. (2016). Empirical research on the efficiency of floating PV systems. Science of Advanced Materials, 8(3), 681–685.
  • Ciel et Terre. (2024). The Floating Solar Company. Retrieved December 15, 2023, from https://ciel-et-terre.net/ Crago, CL. (2021). Economics of Solar Power. Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/ACREFORE/9780199389414.013.491
  • Cuce, E., Cuce, PM., Saboor, S., Ghosh, A., Sheikhnejad, Y. (2022). Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges. Sustainability 2022, Vol. 14, Page 2626, 14(5), 2626. https://doi.org/10.3390/SU14052626
  • DSİ. (2024). Yüzer Ges’lerle Hem Temiz Enerji Hem Su Tasarru. Https://Dsi.Gov.Tr/Haber/Detay/12128.
  • Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/J.CSITE.2020.100674
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2025). Türkiye Elektrik Enerjisi. Https://Enerji.Gov.Tr/Bilgi-Merkezi-Enerji-Elektrik.
  • Exley, G., Hernandez, RR., Page, T., Chipps, M., Gambro, S., Hersey, M., Lake, R., Zoannou, KS., Armstrong, A. (2021). Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renewable and Sustainable Energy Reviews, 152, 111639. https://doi.org/10.1016/J.RSER.2021.111639
  • Farfan, J., Breyer, C. (2018). Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential. Energy Procedia, 155, 403–411. https://doi.org/10.1016/J.EGYPRO.2018.11.038
  • Ferrer-Gisbert, C., Ferrán-Gozálvez, JJ., Redón-Santafé, M., Ferrer-Gisbert, P., Sánchez-Romero, FJ., Torregrosa-Soler, JB. (2013). A new photovoltaic floating cover system for water reservoirs. Renewable Energy, 60, 63–70. https://doi.org/10.1016/J.RENENE.2013.04.007
  • Finch, J., Calver, A. (2008). Methods for the quantification of evaporation from lakes prepared for the World Meteorological Organization’s Commission for Hydrology.
  • Ghosh, A. (2020). Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power. Challenges 2020, Vol. 11, Page 9, 11(1), 9. https://doi.org/10.3390/CHALLE11010009
  • Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): A review. Solar Energy, 237, 213–230. https://doi.org/10.1016/J.SOLENER.2022.04.013
  • Golroodbari, SZ., Van Sark, W. (2020). Simulation of performance differences between offshore and land-based photovoltaic systems. Progress in Photovoltaics: Research and Applications, 28(9), 873–886. https://doi.org/10.1002/PIP.3276
  • Google Earth. (2025). https://earth.google.com/
  • Gorjian, S., Ebadi, H., Calise, F., Shukla, A., Ingrao, C. (2020). A review on recent advancements in performance enhancement techniques for low-temperature solar collectors. Energy Conversion and Management, 222, 113246. https://doi.org/10.1016/J.ENCONMAN.2020.113246
  • Gorjian, S., Ghobadian, B. (2015). Erratum: Solar desalination: A sustainable solution to water crisis in Iran (Renew. Sustain. Energy Rev. (2015) 48 (571-584)). Renewable and Sustainable Energy Reviews, 49, 1323. https://doi.org/10.1016/j.rser.2015.04.009
  • Gorjian, S., Zadeh, BN., Eltrop, L., Shamshiri, RR., Amanlou, Y. (2019). Solar photovoltaic power generation in Iran: Development, policies, and barriers. Renewable and Sustainable Energy Reviews, 106, 110–123. https://doi.org/10.1016/J.RSER.2019.02.025
  • Goswami, A., Sadhu, P., Goswami, U., Sadhu, PK. (2019). Floating solar power plant for sustainable development: A techno-economic analysis. Environmental Progress & Sustainable Energy, 38(6), e13268. https://doi.org/10.1002/EP.13268
  • GreenPowerHybrid LLC Company. (2021). Floating solar system. https://www.gree npowerhybrid.com/floating-solar-system/
  • Gul, M., Kotak, Y., Muneer, T., Ivanova, S. (2018). Enhancement of albedo for solar energy gain with particular emphasis on overcast skies. Energies, 11(11). https://doi.org/10.3390/EN11112881
  • Haas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, SU., Nowak, W., Chen, PJ. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206, 112414. https://doi.org/10.1016/J.ENCONMAN.2019.112414
  • Hassan, MM., Peirson, WL., Neyland, BM., Fiddis, NMQ. (2015). Evaporation mitigation using floating modular devices. Journal of Hydrology, 530, 742–750. https://doi.org/10.1016/J.JHYDROL.2015.10.027
  • Hernandez, RR., Easter, SB., Murphy-Mariscal, ML., Maestre, FT., Tavassoli, M., Allen, EB., Barrows, CW., Belnap, J., Ochoa-Hueso, R., Ravi, S., Allen, MF. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779. https://doi.org/10.1016/J.RSER.2013.08.041
  • Hooper, T., Armstrong, A., Vlaswinkel, B. (2021). Environmental impacts and benefits of marine floating solar. Solar Energy, 219, 11–14. https://doi.org/10.1016/J.SOLENER.2020.10.010
  • İBB. (2017). Türkiye’nin ilk yüzer güneş enerji santrali. Suncalc.Org. https://www.aa.com.tr/tr/turkiye/ibb-turkiyenin-ilk-yuzer-gunes-enerji-santralini-kurdu/876616
  • Kahl, A., Dujardin, J., Lehning, M. (2019). The bright side of PV production in snow-covered mountains. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1162–1167. https://doi.org/10.1073/PNAS.1720808116/SUPPL_FILE/PNAS.1720808116.SAPP.PDF
  • Kamuyu, WCL., Lim, JR., Won, CS., Ahn, HK. (2018). Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies, 11(2). https://doi.org/10.3390/en11020447
  • Kant, K., Shukla, A., Sharma, A., Biwole, PH. (2016). Thermal response of poly-crystalline silicon photovoltaic panels: Numerical simulation and experimental study. Solar Energy, 134, 147–155. https://doi.org/10.1016/J.SOLENER.2016.05.002
  • Kulat, MI., Tosun, K., Karaveli, AB., Yucel, I., Akinoglu, BG. (2023). A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey. Renewable Energy, 206, 694–709. https://doi.org/10.1016/j.renene.2022.12.058
  • Lee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., Cox, S. (2020). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080
  • Li, W., Guo, Y., Fu, K. (2011). Enclosure Experiment for Influence on Algae Growth by Shading Light. Procedia Environmental Sciences, 10(PART B), 1823–1828. https://doi.org/10.1016/J.PROENV.2011.09.285
  • Liu, H., Krishna, V., Lun Leung, J., Reindl, T., Zhao, L. (2018). Field experience and performance analysis of floating PV technologies in the tropics. Progress in Photovoltaics: Research and Applications, 26(12), 957–967. https://doi.org/10.1002/PIP.3039
  • Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q., Wennersten, R. (2017). Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia, 105, 1136–1142. https://doi.org/10.1016/J.EGYPRO.2017.03.483
  • Mardin Ticaret Odası. (2023). Ilısu Barajı Fizibilite Raporu Rev-2- -2.
  • Meteoroloji Genel Müdürlüğü. (2024). Türkiye Global Güneş Radyasyonu Uzun Yıllar Ortalaması (2004-2021) Heliosa Model Ürünleri. Https://Mgm.Gov.Tr/Kurumici/Radyasyon_iller.Aspx?Il=elazig.
  • Meteoroloji Genel Müdürlüğü. (2025). Türkiye (5-10) Ayları Günlük Açık Yüzey Buharlaşma. https://mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-buharlasma.pdf
  • Muzathik, AM., Muzathik, AM. (2014). Photovoltaic Modules Operating Temperature Estimation Using a Simple Correlation. In International Journal of Energy Engineering (Vol. 4, Issue 4). https://www.researchgate.net/publication/267911000
  • NASA. (2024, December). Surface Albedo. https://worldview.earthdata.nasa.gov/
  • Olabi, AG., Abdelkareem, MA. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111. https://doi.org/10.1016/J.RSER.2022.112111
  • Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, MA., da Silva Fidelis, N. (2020). Water-energy nexus: Floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.122010
  • Piana, V., Kahl, A., Saviozzi, C., Schumann, R. (2021). Floating PV in mountain artificial lakes: a checklist for site assessment. Renewable Energy and Environmental Sustainability, 6, 4. https://doi.org/10.1051/REES/2021002
  • Pimentel Da Silva, GD., Branco, DAC. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36(5), 390–400. https://doi.org/10.1080/14615517.2018.1477498
  • Pringle, AM., Handler, RM., Pearce, JM. (2017). Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renewable and Sustainable Energy Reviews, 80, 572–584. https://doi.org/10.1016/J.RSER.2017.05.191
  • PVsyst. (2025). Array Thermal losses. Retrieved May 6, 2025, from https://www.pvsyst.com/help-pvsyst7/thermal_loss.htm
  • Ranjbaran, P., Yousefi, H., Gharehpetian, GB., Astaraei, FR. (2019). A review on floating photovoltaic (FPV) power generation units. Renewable and Sustainable Energy Reviews, 110, 332–347. https://doi.org/10.1016/J.RSER.2019.05.015
  • Reindl, T., Paton, C., Kumar, A., Liu, H., Krishnamurthy, V. A., Zhang, J., Tay, S., Zhan, Y., Dobrotkova, Z., Chavez, S., Jackson, C., Knight, O., Cornieti, S., Audinet, P., Draugelis, G., Goyal, S., Lorillou, P., Tavoulareas, S., Malovic, D., … SERIS, at the N. U. of S. (NUS). (2019). Where Sun Meets Water: Floating Solar Market Report. https://documents1.worldbank.org/curated/en/670101560451219695/pdf/Floating-Solar-Market-Report.pdf
  • Rodríguez-Gallegos, CD., Gandhi, O., Sun, H., Paton, C., Zhang, J., Moideen Yacob Ali, J., Alvarez-Alvarado, MS., Zhang, W., Rodríguez-Gallegos, CA., Chua, LHC., Reindl, T. (2025). Global floating PV status and potential. Progress in Energy, 7(1). https://doi.org/10.1088/2516-1083/ad9074
  • Rosa-Clot, M., & Marco Tina, G. (2020). Floating PV Plants. https://books.google.com.tr/books?hl=tr&lr=&id=yKXMDwAAQBAJ&oi=fnd&pg=PP1&ots=W8i8L6jw9A&sig=JPI1mh9BeARAXb-x51RsH9mTrq8&redir_esc=y#v=onepage&q&f=false
  • Rosa-Clot, M., Pistocchi, A., Quaranta, E., Rosa-Clot, M., Pistocchi, A. (2021). The role of floating PV in the retrofitting of existing hydropower plants and evaporation reduction. https://www.researchgate.net/publication/353043174
  • Rosa-Clot, M., Tina, GM. (2017). Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies. Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies, 1–242. https://doi.org/10.1016/C2016-0-03291-6
  • Rosa-Clot, M., Tina, GM., Nizetic, S. (2017). Floating photovoltaic plants and wastewater basins: an Australian project. Energy Procedia, 134, 664–674. https://doi.org/10.1016/J.EGYPRO.2017.09.585
  • Sahu, A., Yadav, N., Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824. https://doi.org/10.1016/J.RSER.2016.08.051
  • Sarver, T., Al-Qaraghuli, A., Kazmerski, LL. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/J.RSER.2012.12.065
  • Sengupta, S., Ghosh, A., Mallick, TK., Chanda, CK., Saha, H., Bose, I., Jana, J., Sengupta, S. (2021). Model Based Generation Prediction of SPV Power Plant Due to Weather Stressed Soiling. Energies 2021, Vol. 14, Page 5305, 14(17), 5305. https://doi.org/10.3390/EN14175305
  • Skoplaki, E., Palyvos, JA. (2009). Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy, 34(1), 23–29. https://doi.org/10.1016/j.renene.2008.04.009
  • Statista, Mackenzie, W. (2022a). Breakdown-of-global-floating-solar-pv-installations-demand-2022-by-region.
  • Statista, Mackenzie, W. (2022b). Projected global demand of annual floating solar PV energy 2018-2031.
  • Taboada, ME., Cáceres, L., Graber, TA., Galleguillos, HR., Cabeza, LF., Rojas, R. (2017). Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renewable Energy, 105, 601–615. https://doi.org/10.1016/J.RENENE.2016.12.094
  • Technical Report. (2021). Solar, P.V.
  • Technical Report. (2022). Smart Electrification with Renewables: Driving the Transformation of Energy Services.
  • Tim Umoette, A. (2016). Design of Stand Alone Floating PV System for Ibeno Health Centre. Science Journal of Energy Engineering, 4(6), 56. https://doi.org/10.11648/j.sjee.20160406.12
  • Tina, GM., Bontempo Scavo, F., Merlo, L., Bizzarri, F. (2021). Analysis of water environment on the performances of floating photovoltaic plants. Renewable Energy, 175, 281–295. https://doi.org/10.1016/J.RENENE.2021.04.082
  • Tina, GM., Rosa-Clot, M., Rosa-Clot, P., Tina, GM., Rosa-Clot, M., Rosa-Clot, P. (2011). Electrical Behavior and Optimization of Panels and Reflector of a Photovoltaic Floating Plant. https://doi.org/10.4229/26thEUPVSEC2011-5BV.2.54
  • Trapani, K., Redõn Santafé, M. (2015). A review of floating photovoltaic installations: 2007-2013. In Progress in Photovoltaics: Research and Applications (Vol. 23, Issue 4, pp. 524–532). John Wiley and Sons Ltd. https://doi.org/10.1002/pip.2466
  • TÜİK. (2023). Belediyelerde İçmesuyu Şebekesi İçin Çekilen Toplam Su. https://data.tuik.gov.tr/Bulten/Index?p=Su-ve-Atiksu- Istatistikleri-2022-49607
  • TÜİK. (2025). Çevre İstatistikleri. https://data.tuik.gov.tr/Search/Search?text=sera&dil=1
  • Van de Ven, DJ., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific Reports, 11(1). https://doi.org/10.1038/S41598-021-82042-5
  • Yadav, N., Gupta, M., Sudhakar, K. (2017). Energy assessment of floating photovoltaic system. International Conference on Electrical Power and Energy Systems, ICEPES 2016, 264–269. https://doi.org/10.1109/ICEPES.2016.7915941

Technical and Environmental Review of Floating Photovoltaic Energy Conversion Systems

Year 2025, Volume: 15 Issue: 3, 74 - 94, 19.11.2025

Abstract

Solar energy, as a prominent renewable energy source, has emerged as one of the leading investment preferences in the pursuit of a net-zero emission future globally. Floating and land-based photovoltaic (PV) energy conversion systems exhibit notable differences in terms of installation, maintenance, electrical efficiency, environmental impact, cost, and financial returns. Floating PV systems offer several advantages, including reduced mechanical stress on panel support structures, the natural cooling effect of water on panels, minimal shading, easier integration of solar tracking systems, higher energy yield per unit surface area, mitigation of water evaporation, and the potential for hybrid operation with hydroelectric power plants. Conversely, land-based systems are generally easier to install; however, the availability of suitable land is becoming increasingly limited. Moreover, elevated panel temperatures and shading issues in land-based systems often result in decreased energy conversion efficiency. This study presents a comparative analysis of simulation-based and experimental research on floating and land-based PV systems, both globally and within the context of Turkey, as documented in the literature. A simulation was conducted using the PVsyst software, focusing on 0.1% (76000 m²) of the surface area of Lake Hazar, located in Elazig. The simulation modelled 9672 PV panels installed on the lake at a tilt angle of 14°, resulting in an annual electricity generation of 11.997 MWh. Compared to a land-based system utilizing panels tilted at 37°, the floating system demonstrated a 2.84% increase in energy efficiency. Additionally, the simulation indicated an annual reduction of 143.8 tons of CO₂ emissions and the prevention of approximately 25330 m³ of water evaporation. The scope of the study is geographically constrained by the micro-scale characteristics of the selected water surface area. The findings and methodologies presented herein can be adapted for use in other regions, enabling broader application of similar analytical approaches.

References

  • Antonio, M., Galdino, E., Maria, M., Olivieri, A. (2017). Some Remarks about the Deployment of Floating PV Systems in Brazil. Journal of Electrical Engineering, 5, 10–19. https://doi.org/10.17265/2328-2223/2017.01.002
  • ArcGIS 10.8 (10.8). (2025).
  • Bontempo Scavo, F., Tina, GM., Gagliano, A., Nižetić, S. (2021). An assessment study of evaporation rate models on a water basin with floating photovoltaic plants. International Journal of Energy Research, 45(1), 167–188. https://doi.org/10.1002/er.5170
  • Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., Tina, GM. (2012). Floating tracking cooling concentrating (FTCC) systems. Conference Record of the IEEE Photovoltaic Specialists Conference, 514–519. https://doi.org/10.1109/PVSC.2012.6317668
  • Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., Tina, GM. (2019). Integration of PV floating with hydroelectric power plants. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01918
  • Chanchangi, YN., Ghosh, A., Baig, H., Sundaram, S., Mallick, TK. (2021). Soiling on PV performance influenced by weather parameters in Northern Nigeria. Renewable Energy, 180, 874–892. https://doi.org/10.1016/J.RENENE.2021.08.090
  • Chanchangi, YN., Ghosh, A., Sundaram, S., Mallick, TK. (2021). Angular dependencies of soiling loss on photovoltaic performance in Nigeria. Solar Energy, 225, 108–121. https://doi.org/10.1016/J.SOLENER.2021.07.001
  • Chen, YK, Kirkerud, JG, Bolkesjø, TF. (2022). Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios. Applied Energy, 310, 118557. https://doi.org/10.1016/J.APENERGY.2022.118557
  • Choi, YK., Choi, WS., Lee, JH. (2016). Empirical research on the efficiency of floating PV systems. Science of Advanced Materials, 8(3), 681–685.
  • Ciel et Terre. (2024). The Floating Solar Company. Retrieved December 15, 2023, from https://ciel-et-terre.net/ Crago, CL. (2021). Economics of Solar Power. Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/ACREFORE/9780199389414.013.491
  • Cuce, E., Cuce, PM., Saboor, S., Ghosh, A., Sheikhnejad, Y. (2022). Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges. Sustainability 2022, Vol. 14, Page 2626, 14(5), 2626. https://doi.org/10.3390/SU14052626
  • DSİ. (2024). Yüzer Ges’lerle Hem Temiz Enerji Hem Su Tasarru. Https://Dsi.Gov.Tr/Haber/Detay/12128.
  • Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/J.CSITE.2020.100674
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2025). Türkiye Elektrik Enerjisi. Https://Enerji.Gov.Tr/Bilgi-Merkezi-Enerji-Elektrik.
  • Exley, G., Hernandez, RR., Page, T., Chipps, M., Gambro, S., Hersey, M., Lake, R., Zoannou, KS., Armstrong, A. (2021). Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability. Renewable and Sustainable Energy Reviews, 152, 111639. https://doi.org/10.1016/J.RSER.2021.111639
  • Farfan, J., Breyer, C. (2018). Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential. Energy Procedia, 155, 403–411. https://doi.org/10.1016/J.EGYPRO.2018.11.038
  • Ferrer-Gisbert, C., Ferrán-Gozálvez, JJ., Redón-Santafé, M., Ferrer-Gisbert, P., Sánchez-Romero, FJ., Torregrosa-Soler, JB. (2013). A new photovoltaic floating cover system for water reservoirs. Renewable Energy, 60, 63–70. https://doi.org/10.1016/J.RENENE.2013.04.007
  • Finch, J., Calver, A. (2008). Methods for the quantification of evaporation from lakes prepared for the World Meteorological Organization’s Commission for Hydrology.
  • Ghosh, A. (2020). Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power. Challenges 2020, Vol. 11, Page 9, 11(1), 9. https://doi.org/10.3390/CHALLE11010009
  • Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): A review. Solar Energy, 237, 213–230. https://doi.org/10.1016/J.SOLENER.2022.04.013
  • Golroodbari, SZ., Van Sark, W. (2020). Simulation of performance differences between offshore and land-based photovoltaic systems. Progress in Photovoltaics: Research and Applications, 28(9), 873–886. https://doi.org/10.1002/PIP.3276
  • Google Earth. (2025). https://earth.google.com/
  • Gorjian, S., Ebadi, H., Calise, F., Shukla, A., Ingrao, C. (2020). A review on recent advancements in performance enhancement techniques for low-temperature solar collectors. Energy Conversion and Management, 222, 113246. https://doi.org/10.1016/J.ENCONMAN.2020.113246
  • Gorjian, S., Ghobadian, B. (2015). Erratum: Solar desalination: A sustainable solution to water crisis in Iran (Renew. Sustain. Energy Rev. (2015) 48 (571-584)). Renewable and Sustainable Energy Reviews, 49, 1323. https://doi.org/10.1016/j.rser.2015.04.009
  • Gorjian, S., Zadeh, BN., Eltrop, L., Shamshiri, RR., Amanlou, Y. (2019). Solar photovoltaic power generation in Iran: Development, policies, and barriers. Renewable and Sustainable Energy Reviews, 106, 110–123. https://doi.org/10.1016/J.RSER.2019.02.025
  • Goswami, A., Sadhu, P., Goswami, U., Sadhu, PK. (2019). Floating solar power plant for sustainable development: A techno-economic analysis. Environmental Progress & Sustainable Energy, 38(6), e13268. https://doi.org/10.1002/EP.13268
  • GreenPowerHybrid LLC Company. (2021). Floating solar system. https://www.gree npowerhybrid.com/floating-solar-system/
  • Gul, M., Kotak, Y., Muneer, T., Ivanova, S. (2018). Enhancement of albedo for solar energy gain with particular emphasis on overcast skies. Energies, 11(11). https://doi.org/10.3390/EN11112881
  • Haas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, SU., Nowak, W., Chen, PJ. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206, 112414. https://doi.org/10.1016/J.ENCONMAN.2019.112414
  • Hassan, MM., Peirson, WL., Neyland, BM., Fiddis, NMQ. (2015). Evaporation mitigation using floating modular devices. Journal of Hydrology, 530, 742–750. https://doi.org/10.1016/J.JHYDROL.2015.10.027
  • Hernandez, RR., Easter, SB., Murphy-Mariscal, ML., Maestre, FT., Tavassoli, M., Allen, EB., Barrows, CW., Belnap, J., Ochoa-Hueso, R., Ravi, S., Allen, MF. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779. https://doi.org/10.1016/J.RSER.2013.08.041
  • Hooper, T., Armstrong, A., Vlaswinkel, B. (2021). Environmental impacts and benefits of marine floating solar. Solar Energy, 219, 11–14. https://doi.org/10.1016/J.SOLENER.2020.10.010
  • İBB. (2017). Türkiye’nin ilk yüzer güneş enerji santrali. Suncalc.Org. https://www.aa.com.tr/tr/turkiye/ibb-turkiyenin-ilk-yuzer-gunes-enerji-santralini-kurdu/876616
  • Kahl, A., Dujardin, J., Lehning, M. (2019). The bright side of PV production in snow-covered mountains. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1162–1167. https://doi.org/10.1073/PNAS.1720808116/SUPPL_FILE/PNAS.1720808116.SAPP.PDF
  • Kamuyu, WCL., Lim, JR., Won, CS., Ahn, HK. (2018). Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies, 11(2). https://doi.org/10.3390/en11020447
  • Kant, K., Shukla, A., Sharma, A., Biwole, PH. (2016). Thermal response of poly-crystalline silicon photovoltaic panels: Numerical simulation and experimental study. Solar Energy, 134, 147–155. https://doi.org/10.1016/J.SOLENER.2016.05.002
  • Kulat, MI., Tosun, K., Karaveli, AB., Yucel, I., Akinoglu, BG. (2023). A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey. Renewable Energy, 206, 694–709. https://doi.org/10.1016/j.renene.2022.12.058
  • Lee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., Cox, S. (2020). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080
  • Li, W., Guo, Y., Fu, K. (2011). Enclosure Experiment for Influence on Algae Growth by Shading Light. Procedia Environmental Sciences, 10(PART B), 1823–1828. https://doi.org/10.1016/J.PROENV.2011.09.285
  • Liu, H., Krishna, V., Lun Leung, J., Reindl, T., Zhao, L. (2018). Field experience and performance analysis of floating PV technologies in the tropics. Progress in Photovoltaics: Research and Applications, 26(12), 957–967. https://doi.org/10.1002/PIP.3039
  • Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q., Wennersten, R. (2017). Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia, 105, 1136–1142. https://doi.org/10.1016/J.EGYPRO.2017.03.483
  • Mardin Ticaret Odası. (2023). Ilısu Barajı Fizibilite Raporu Rev-2- -2.
  • Meteoroloji Genel Müdürlüğü. (2024). Türkiye Global Güneş Radyasyonu Uzun Yıllar Ortalaması (2004-2021) Heliosa Model Ürünleri. Https://Mgm.Gov.Tr/Kurumici/Radyasyon_iller.Aspx?Il=elazig.
  • Meteoroloji Genel Müdürlüğü. (2025). Türkiye (5-10) Ayları Günlük Açık Yüzey Buharlaşma. https://mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-buharlasma.pdf
  • Muzathik, AM., Muzathik, AM. (2014). Photovoltaic Modules Operating Temperature Estimation Using a Simple Correlation. In International Journal of Energy Engineering (Vol. 4, Issue 4). https://www.researchgate.net/publication/267911000
  • NASA. (2024, December). Surface Albedo. https://worldview.earthdata.nasa.gov/
  • Olabi, AG., Abdelkareem, MA. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111. https://doi.org/10.1016/J.RSER.2022.112111
  • Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, MA., da Silva Fidelis, N. (2020). Water-energy nexus: Floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.122010
  • Piana, V., Kahl, A., Saviozzi, C., Schumann, R. (2021). Floating PV in mountain artificial lakes: a checklist for site assessment. Renewable Energy and Environmental Sustainability, 6, 4. https://doi.org/10.1051/REES/2021002
  • Pimentel Da Silva, GD., Branco, DAC. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36(5), 390–400. https://doi.org/10.1080/14615517.2018.1477498
  • Pringle, AM., Handler, RM., Pearce, JM. (2017). Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renewable and Sustainable Energy Reviews, 80, 572–584. https://doi.org/10.1016/J.RSER.2017.05.191
  • PVsyst. (2025). Array Thermal losses. Retrieved May 6, 2025, from https://www.pvsyst.com/help-pvsyst7/thermal_loss.htm
  • Ranjbaran, P., Yousefi, H., Gharehpetian, GB., Astaraei, FR. (2019). A review on floating photovoltaic (FPV) power generation units. Renewable and Sustainable Energy Reviews, 110, 332–347. https://doi.org/10.1016/J.RSER.2019.05.015
  • Reindl, T., Paton, C., Kumar, A., Liu, H., Krishnamurthy, V. A., Zhang, J., Tay, S., Zhan, Y., Dobrotkova, Z., Chavez, S., Jackson, C., Knight, O., Cornieti, S., Audinet, P., Draugelis, G., Goyal, S., Lorillou, P., Tavoulareas, S., Malovic, D., … SERIS, at the N. U. of S. (NUS). (2019). Where Sun Meets Water: Floating Solar Market Report. https://documents1.worldbank.org/curated/en/670101560451219695/pdf/Floating-Solar-Market-Report.pdf
  • Rodríguez-Gallegos, CD., Gandhi, O., Sun, H., Paton, C., Zhang, J., Moideen Yacob Ali, J., Alvarez-Alvarado, MS., Zhang, W., Rodríguez-Gallegos, CA., Chua, LHC., Reindl, T. (2025). Global floating PV status and potential. Progress in Energy, 7(1). https://doi.org/10.1088/2516-1083/ad9074
  • Rosa-Clot, M., & Marco Tina, G. (2020). Floating PV Plants. https://books.google.com.tr/books?hl=tr&lr=&id=yKXMDwAAQBAJ&oi=fnd&pg=PP1&ots=W8i8L6jw9A&sig=JPI1mh9BeARAXb-x51RsH9mTrq8&redir_esc=y#v=onepage&q&f=false
  • Rosa-Clot, M., Pistocchi, A., Quaranta, E., Rosa-Clot, M., Pistocchi, A. (2021). The role of floating PV in the retrofitting of existing hydropower plants and evaporation reduction. https://www.researchgate.net/publication/353043174
  • Rosa-Clot, M., Tina, GM. (2017). Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies. Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies, 1–242. https://doi.org/10.1016/C2016-0-03291-6
  • Rosa-Clot, M., Tina, GM., Nizetic, S. (2017). Floating photovoltaic plants and wastewater basins: an Australian project. Energy Procedia, 134, 664–674. https://doi.org/10.1016/J.EGYPRO.2017.09.585
  • Sahu, A., Yadav, N., Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824. https://doi.org/10.1016/J.RSER.2016.08.051
  • Sarver, T., Al-Qaraghuli, A., Kazmerski, LL. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/J.RSER.2012.12.065
  • Sengupta, S., Ghosh, A., Mallick, TK., Chanda, CK., Saha, H., Bose, I., Jana, J., Sengupta, S. (2021). Model Based Generation Prediction of SPV Power Plant Due to Weather Stressed Soiling. Energies 2021, Vol. 14, Page 5305, 14(17), 5305. https://doi.org/10.3390/EN14175305
  • Skoplaki, E., Palyvos, JA. (2009). Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy, 34(1), 23–29. https://doi.org/10.1016/j.renene.2008.04.009
  • Statista, Mackenzie, W. (2022a). Breakdown-of-global-floating-solar-pv-installations-demand-2022-by-region.
  • Statista, Mackenzie, W. (2022b). Projected global demand of annual floating solar PV energy 2018-2031.
  • Taboada, ME., Cáceres, L., Graber, TA., Galleguillos, HR., Cabeza, LF., Rojas, R. (2017). Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renewable Energy, 105, 601–615. https://doi.org/10.1016/J.RENENE.2016.12.094
  • Technical Report. (2021). Solar, P.V.
  • Technical Report. (2022). Smart Electrification with Renewables: Driving the Transformation of Energy Services.
  • Tim Umoette, A. (2016). Design of Stand Alone Floating PV System for Ibeno Health Centre. Science Journal of Energy Engineering, 4(6), 56. https://doi.org/10.11648/j.sjee.20160406.12
  • Tina, GM., Bontempo Scavo, F., Merlo, L., Bizzarri, F. (2021). Analysis of water environment on the performances of floating photovoltaic plants. Renewable Energy, 175, 281–295. https://doi.org/10.1016/J.RENENE.2021.04.082
  • Tina, GM., Rosa-Clot, M., Rosa-Clot, P., Tina, GM., Rosa-Clot, M., Rosa-Clot, P. (2011). Electrical Behavior and Optimization of Panels and Reflector of a Photovoltaic Floating Plant. https://doi.org/10.4229/26thEUPVSEC2011-5BV.2.54
  • Trapani, K., Redõn Santafé, M. (2015). A review of floating photovoltaic installations: 2007-2013. In Progress in Photovoltaics: Research and Applications (Vol. 23, Issue 4, pp. 524–532). John Wiley and Sons Ltd. https://doi.org/10.1002/pip.2466
  • TÜİK. (2023). Belediyelerde İçmesuyu Şebekesi İçin Çekilen Toplam Su. https://data.tuik.gov.tr/Bulten/Index?p=Su-ve-Atiksu- Istatistikleri-2022-49607
  • TÜİK. (2025). Çevre İstatistikleri. https://data.tuik.gov.tr/Search/Search?text=sera&dil=1
  • Van de Ven, DJ., Capellan-Peréz, I., Arto, I., Cazcarro, I., de Castro, C., Patel, P., & Gonzalez-Eguino, M. (2021). The potential land requirements and related land use change emissions of solar energy. Scientific Reports, 11(1). https://doi.org/10.1038/S41598-021-82042-5
  • Yadav, N., Gupta, M., Sudhakar, K. (2017). Energy assessment of floating photovoltaic system. International Conference on Electrical Power and Energy Systems, ICEPES 2016, 264–269. https://doi.org/10.1109/ICEPES.2016.7915941
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Photovoltaic Power Systems
Journal Section Research Article
Authors

Zehra Akcan Kocadağ 0000-0002-3626-5620

Murat Ünlü 0000-0002-7650-119X

Publication Date November 19, 2025
Submission Date May 9, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Akcan Kocadağ, Z., & Ünlü, M. (2025). Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi. Karaelmas Fen Ve Mühendislik Dergisi, 15(3), 74-94. https://doi.org/10.7212/karaelmasfen.1695961
AMA Akcan Kocadağ Z, Ünlü M. Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. November 2025;15(3):74-94. doi:10.7212/karaelmasfen.1695961
Chicago Akcan Kocadağ, Zehra, and Murat Ünlü. “Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik Ve Çevresel Bakımdan İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi 15, no. 3 (November 2025): 74-94. https://doi.org/10.7212/karaelmasfen.1695961.
EndNote Akcan Kocadağ Z, Ünlü M (November 1, 2025) Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi 15 3 74–94.
IEEE Z. Akcan Kocadağ and M. Ünlü, “Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 15, no. 3, pp. 74–94, 2025, doi: 10.7212/karaelmasfen.1695961.
ISNAD Akcan Kocadağ, Zehra - Ünlü, Murat. “Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik Ve Çevresel Bakımdan İncelenmesi”. Karaelmas Fen ve Mühendislik Dergisi 15/3 (November2025), 74-94. https://doi.org/10.7212/karaelmasfen.1695961.
JAMA Akcan Kocadağ Z, Ünlü M. Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:74–94.
MLA Akcan Kocadağ, Zehra and Murat Ünlü. “Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik Ve Çevresel Bakımdan İncelenmesi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 15, no. 3, 2025, pp. 74-94, doi:10.7212/karaelmasfen.1695961.
Vancouver Akcan Kocadağ Z, Ünlü M. Yüzer Fotovoltaik Enerji Dönüşüm Sistemlerinin Teknik ve Çevresel Bakımdan İncelenmesi. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(3):74-9.