Research Article
BibTex RIS Cite

Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi

Year 2025, Volume: 15 Issue: 3, 108 - 119, 19.11.2025

Abstract

Kömür madenciliğinde mekanizasyonun gelişmesi ile elde edilen ince kömür miktarının artması ve ince boyutta kül oranının yüksek olması gibi nedenlerden dolayı -0,5 mm boyutundaki kömür şlamları kömür yıkama tesislerinde atık havuzlarında bekletilmektedir. Tesislerde büyük miktarda bulunan bu şlamların sürdürülebilirlik doğrultusunda ekonomiye kazandırılarak atık miktarının azaltılması gerekmektedir. Bu çalışmada, flotasyon yöntemiyle kömür şlamlarının daha verimli bir şekilde zenginleştirilmesi amacıyla, çok sayıda ve küçük çaplı hava kabarcıkları üretmek için farklı tipteki tekli köpürtücüler ile bu köpürtücülerin ikili karışımlarının kabarcık çapları üzerindeki etkisi incelenmiştir. Elde edilen kabarcık çapı verileri yanabilir verim, kül içeriği ve su verimi açısından değerlendirilmiştir. Çalışmada köpürtücülere göre çevreye daha zararlı ve daha yüksek maliyetli olan kerosenin miktarının arttırılarak yüksek yanabilir verim değerlerine ulaşılması yerine benzer verimlerin köpürtücü karışımları ile elde edilmesi amaçlanmıştır. Çalışma sonucunda kollektör olarak 1200 g/t kerosen ve köpürtücü olarak 100+100 g/t (200 g/t) Dowfroth 250-İzooktanol karışımı kullanılarak şlam kömürden %83,4 yanabilir verim ile %15,72 kül içerikli kömür kazanımı %17,54 su verimi ile gerçekleştirilmiştir.

References

  • An, M., Liao, Y., Zhao, Y., Li, X., Lai, Q., Liu, Z., He, Y. 2018. Effect of frothers on removal of unburned carbon from coal-fired power plant fly ash by froth flotation. Separation Science and Technology, 53:535-543. Doi: 10.1080/01496395.2017.1392575
  • Akcil, A., Koldas, S. 2006. Acid Mine Drainage (AMD): cause, treatment and case studies. Journal of Cleaner Production, 14: 1139-1145.Doi: 10.1016/j.jclepro.2004.09.006
  • Atak, S. 2017. Flotasyon Cevher Hazırlamada 100 Yıl. İstanbul: İTÜ Vakfı Yayınları.
  • Batjargal, K, Guven, O., Ozdemir, O., Karakashev, SI., Grozev, NA., Boylu, F., Çelik, MS. 2021. Adsorption kinetics of various frothers on rising bubbles of different sizes under flotation conditions, Minerals, 2021, 11(3): 304. Doi: 10.3390/min11030304.
  • Bayram, S., Yenial, Ü., Bulut, G. 2018. The Effect of Frothers on Pyrite Flotation. Istanbul Technical University, İTÜ Mining Faculty Geosciences Student Graduation Design Projects Symposium, Editors: Cengiz Kuzu, Hakan Tunçdemir, Neslihan Ocakoğlu Gökaşan. pp: 526-530.
  • Castro, S., Miranda, C., Toledo, P., Laskowski, JS. 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process, 124: 8–14. Doi: 10.1016/j.minpro.2013.07.002
  • Ceylan, A., Bulut, G. 2021. Investigation of the frother effect in two and three phases systems on bubble size, surface tension, recovery and grade in chalcopyrite flotation. Physicochemical Problems Mineral Processing, 57(6):23-35. Doi: 10.37190/ppmp/142334
  • Cho, YS., Laskowski, J. S. 2002. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64, 69-80. Doi: 10.1016/S0301-7516(01)00064-3
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants- A critical overview. Fuel Processing Technology, 94, 151–158. Doi: 10.1016/j.fuproc.2011.10.021
  • Dey, S., Pani, S., Singh, R. 2014. Study of interactions of frother blends and its effect on coal flotation. Powder Technology, 260: 78–83. Doi: 10.1016/j.powtec.2014.03.068
  • Farrokhpay, S. 2011. The significance of froth stability in mineral flotation - A review. Advances in Colloid and Interface Science, 166: 1-7. Doi: 10.1016/j.cis.2011.03.001
  • Finch, A., Nesset, JE., Acuna, C. 2008. Role of frother on bubble production and behaviour in flotation. Mineral Engineering, 21, 949-857. Doi: 10.1016/j.mineng.2008.04.006
  • Finch, J., Zhang, W. 2014. Frother function-structure relationship: Dependence of CCC95 on HLB and H-ratio. Minerals Engineering, 61: 1–8. Doi: 10.1016/j.mineng.2014.02.006
  • Fu, T., Wua, Y., Ou, L. Yang, G., Liang, T. 2012. Effects of thin Covers on the Release of Coal Gangue Contaminants. Energy Procedia, 16:327-333. Doi:10.1016/j.egypro.2012.01.054
  • Groppo, J. 2017. An introduction to the nature of coal. Ed. T. Robl, A. Oberlink, & R. Jones, Coal Combustion Products (CCP’s) (pp. 3-20). Woodhead Publishing. Doi: 10.1016/B978-0-08-100945-1.00001-0
  • Gupta, AK., Banerjee, PK., Mishra, A., Satish, P., Pradip, P. 2007. Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. International Journal of Mineral Processing, 82: 126–137. Doi: 10.1016/j.minpro.2006.09.002
  • Güven, G., Tunç, B., Aydın, ŞB, Bulut, G. 2024. Effects of frothers on bubbles size and flotation performance of hydrophobic minerals. Journal of Central South University, 31:2280-2299. Doi: 10.1007/s11771-024-5685-5
  • Hacıfazlıoğlu, H. 2011. Jameson hücresinde bitümlü şlam kömürün flotasyonu için en uygun köpürtücü ve toplayıcı tipinin araştırılması. Dicle Üniversitesi Mühendislik Dergisi, 2: 3-9.
  • Kim, H., Park, CH. 2024. Estimation of Bubble Size and Gas Dispersion Property in Column Flotation. Separations, 11 (12): 331. Doi:10.3390/separations11120331
  • Kovats, P., Thevenin, D., Zahringer, K. 2020. Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. International Journal of Multiphase Flow, 123:103174. Doi: 10.1016/j.ijmultiphaseflow.2019.103174
  • Kowalczuk, PB. 2013. Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers. Industrial & Engineering Chemistry Research, 52, 11752-11757. Doi: 10.1021/ie401263k
  • Laskowski, J. 2001. Coal flotation and fine coal utilization. The University of British Columbia, Vancouver B.C., Canada. 1st Edition. ISBN:0-444-50537-7
  • Li, D., Wu, D., Xu, F., Lai, J., Shao, L. 2018. Literature overview of Chinese research in the field of better coal utilization. Journal of Cleaner Production, 185:959-980. https://doi.org/10.1016/j.jclepro.2018.02.216
  • Liu, D., Somasundaran, P., Vasudevan TV., Harris, CC. 1994. Role of pH and dissolved mineral species in Pittsburgh No.8 coal flotation system—I. Floatability of coal. International Journal of Mineral Processing, 41(3 −4): 201−214. Doi: 10.1016/0301-7516(94)90028-0
  • Melo, F., Laskowski, JS. 2006. Fundamental properties of flotation frothers and their effect on flotation. Minerals Engineering, 19(6/7/8): 766−773. Doi: 10.1016/j.mineng.2005.09.031
  • Neethling, SJ., Lee, HT., Cilliers, JJ. 2003. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 16: 1123–1130. Doi: 10.1016/j.mineng.2003.06.014
  • Ngoroma, F., Wiese, J., Franzidis, JP. 2013. The effect of frother blends on the flotation performance of selected PGM bearing ores. Mineral Engineering, 46-47:76-82. Doi: 10.1016/j.mineng.2013.03.017.
  • Niu, C., Xia, W., Peng, Y. 2018. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation. Fuel. 228:290-296. Doi: 10.1016/j.fuel.2018.04.146
  • Nuorivaara, T., Serna-Guerrero, R. 2020. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 1. Characterization of interfacial and foam stabilization properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604:125297. Doi: 10.1016/j.cdsurfa.2020.125297.
  • Onen, V., Karaoglan, MK. 2024. Flotation of low-rank coal slimes. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 13(1):149-155. Doi: 10.28948/ngumuh.1324175
  • Ostadrahimi, M., Farrokhpay, S., Gharibi K., Dehghani, A., Aghajanloo M., 2021. Effects of flotation operational parameters on froth stability and froth recovery. The Journal of the Southern African Institute of Mining and Metallurgy, 121:11-20. Doi: 10.17159/24119717/1272/2021.
  • Park, H., Ng, CY., Wang, L. 2021. Bubble Size in a Flotation Column with Oscillatory Air Supply in the Presence of Frothers. Mineral Processing and Extractive Metallurgy Review, 43(7): 926–934. Doi: 10.1080/08827508.2021.1970549
  • Polat, M., Polat, H., Chander, S. 2003. Physical and chemical interactions in coal flotation. Minerals Engineering, 16(12): 1193-1199. Doi: 10.1016/S0301-7516(03)00099-1
  • Pudasainee, D., Kurian, V., Gupta, R. 2020. Coal: Past, Present, and Future Sustainable Use. T. M. Letcher (Ed.), Future Energy (Third edition, pp. 21-48). Elsevier. Doi: 10.1016/B978-0-08-102886-5.00002-5
  • Reis, AS., Reis Filho, AM., Demuner, LR., Barrozo, MAS. 2019. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technology, 356: 884–891.
  • Schwarz, S., Grano, S. 2005. Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids and Surfaces A, 256: 157-164. Doi: 10.1016/j.colsurfa.2005.01.010
  • Shen, L., Qiao, E., Liu, L., Xue C., Liu, B., Min, F. 2022. Utilization of coal slime: Coal and kaolinite separation by classification, forward and reverse flotation method. Physicochemical Problems of Mineral Processing, 58(3):147742. DOI: 10.37190/ppmp/147742
  • Song, X., Shao, L., Yang, S., Song, R., Sun, L., Cen, S. 2015. Trace elements pollution and toxicity of airborne PM10 in a coal industrial city. Atmospheric Pollution Research, 6: 469–475. Doi: 10.5094/APR.2015.052
  • Szyszka, D. 2018. Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions. Minerals, 8: 431. Doi:10.3390/min8100431
  • Tan, J., Cheng, H., Wei, L., Wei, C., Xing, Y., Gui, X. 2019. Using low-rank coal slime as an eco-friendly replacement for carbon black filler in styrene butadiene rubber. Journal of Cleaner Production, 234: 949-960. Doi: 10.1016/j.jclepro.2019.06.221.
  • Uçar, A., Şahbaz, O., Ediz, N., Karaca, S., Ediz, İG. 2020. Recovery of coal slime by using the Knelson Concentrator. Journal of Scientific Reports-A, 45:215-224. E-ISSN:2687-6167.
  • Wei, Z., Finch, JA. 2014. Effect of solids on pulp and froth properties in flotation. Journal of Central South University, 21: 1461–1469. Doi: 10.1007/s11771-014-2086-1
  • Wheeler, TA. 1994. Coal floats by itself—doesnt it? In: Mulukutla, P.S. (Ed.), Reagents for Better Metallurgy. SME, Littleton, 131– 145.
  • Wills, BA., Finch, JA. 2016. Section 12- Froth Flotation. Ed. B. A. Wills & J. A. Finch, Wills’ Mineral Processing Technology (Eighth edition, pp. 265-380). Butterworth-Heinemann. Doi: 10.1016/B978-0-08-097053-0.00012-1
  • Xing, Y., Gui, X., Cao, Y., Wang, Y., Li, C. 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology, 305: 166-173. Doi: 10.1016/j.powtec.2016.10.003
  • Xu, Y., Qin, L., Liu, G., Zheng, M., Li, D., Yang, L. 2021. Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. Journal of Hazardous Materials, 409: 12504. Doi: 10.1016/j.jhazmat.2020.125014
  • Xu, M., Guo, F., Bao, X., Gui, X., Xing, Y., Cao, Y. 2023. Study on the strengthening mechanism of a MIBC-PEG mixed surfactant on foam stability. ACS Omega, 8(30): 27429−27438. Doi: 10.1021/acsomega.3c02863
  • Zhang, W., Zhu, S., Finch, JA. 2013. Frother partitioning in dual frother systems: development of analytical technique. International Journal of Mineral Processing, 119:75-82. Doi: 10.1016/j.minpro.2013.01.002
  • Zhang, R., Liu, S., Zheng, S. 2021. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. Journal of Hazardous Materials, 413: 125447. Doi: 10.1016/j.jhazmat.2021.125447
  • Zhu, H., Valdivieso. AL., Zhu, J., Min. F., Song, S., Corona Arroyo, MA. 2019. Air dispersion and bubble characteristics in a downflow flotation column. Mineral Processing and Extractive Metallurgy Review, 40(3): 224–229. Doi:10.1080/08827508.2018.1556159

Effect of Frother Blends on Froth Diameter and Combustible Recovery on Coal Slime Flotation

Year 2025, Volume: 15 Issue: 3, 108 - 119, 19.11.2025

Abstract

Due to the increase in the amount of fine coal obtained due to the development of mechanization in coal mining and the high ash ratio in fine size, coal slimes below 0.5 mm are stored in waste ponds at coal washing plants. These slimes, which are found in large quantities in the plants, should be economised in line with sustainability, and the amount of waste should be reduced. In this study, the effect of different types of single frothers and dual blends of these frothers on bubble diameters was investigated in order to produce a large number of small diameter air bubbles for more efficient beneficiation of coal slimes by the flotation method. The bubble diameter data obtained were evaluated in terms of combustible recovery, ash content, and water recovery. In the study, it was aimed to obtain similar recoveries with frother blends instead of achieving high combustible recovery by increasing the amount of kerosene, which is more costly and more harmful to the environment than frothers. As a result of the study, using 1200 g/t kerosene as a collector and 100+100 g/t (200 g/t) Dowfroth 250-Isooctanol blend as a frother, coal enrichment was achieved with an ash content of 15.72%, combustible recovery of 83.4%, and water recovery of 17.54% from coal slime.

References

  • An, M., Liao, Y., Zhao, Y., Li, X., Lai, Q., Liu, Z., He, Y. 2018. Effect of frothers on removal of unburned carbon from coal-fired power plant fly ash by froth flotation. Separation Science and Technology, 53:535-543. Doi: 10.1080/01496395.2017.1392575
  • Akcil, A., Koldas, S. 2006. Acid Mine Drainage (AMD): cause, treatment and case studies. Journal of Cleaner Production, 14: 1139-1145.Doi: 10.1016/j.jclepro.2004.09.006
  • Atak, S. 2017. Flotasyon Cevher Hazırlamada 100 Yıl. İstanbul: İTÜ Vakfı Yayınları.
  • Batjargal, K, Guven, O., Ozdemir, O., Karakashev, SI., Grozev, NA., Boylu, F., Çelik, MS. 2021. Adsorption kinetics of various frothers on rising bubbles of different sizes under flotation conditions, Minerals, 2021, 11(3): 304. Doi: 10.3390/min11030304.
  • Bayram, S., Yenial, Ü., Bulut, G. 2018. The Effect of Frothers on Pyrite Flotation. Istanbul Technical University, İTÜ Mining Faculty Geosciences Student Graduation Design Projects Symposium, Editors: Cengiz Kuzu, Hakan Tunçdemir, Neslihan Ocakoğlu Gökaşan. pp: 526-530.
  • Castro, S., Miranda, C., Toledo, P., Laskowski, JS. 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process, 124: 8–14. Doi: 10.1016/j.minpro.2013.07.002
  • Ceylan, A., Bulut, G. 2021. Investigation of the frother effect in two and three phases systems on bubble size, surface tension, recovery and grade in chalcopyrite flotation. Physicochemical Problems Mineral Processing, 57(6):23-35. Doi: 10.37190/ppmp/142334
  • Cho, YS., Laskowski, J. S. 2002. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64, 69-80. Doi: 10.1016/S0301-7516(01)00064-3
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants- A critical overview. Fuel Processing Technology, 94, 151–158. Doi: 10.1016/j.fuproc.2011.10.021
  • Dey, S., Pani, S., Singh, R. 2014. Study of interactions of frother blends and its effect on coal flotation. Powder Technology, 260: 78–83. Doi: 10.1016/j.powtec.2014.03.068
  • Farrokhpay, S. 2011. The significance of froth stability in mineral flotation - A review. Advances in Colloid and Interface Science, 166: 1-7. Doi: 10.1016/j.cis.2011.03.001
  • Finch, A., Nesset, JE., Acuna, C. 2008. Role of frother on bubble production and behaviour in flotation. Mineral Engineering, 21, 949-857. Doi: 10.1016/j.mineng.2008.04.006
  • Finch, J., Zhang, W. 2014. Frother function-structure relationship: Dependence of CCC95 on HLB and H-ratio. Minerals Engineering, 61: 1–8. Doi: 10.1016/j.mineng.2014.02.006
  • Fu, T., Wua, Y., Ou, L. Yang, G., Liang, T. 2012. Effects of thin Covers on the Release of Coal Gangue Contaminants. Energy Procedia, 16:327-333. Doi:10.1016/j.egypro.2012.01.054
  • Groppo, J. 2017. An introduction to the nature of coal. Ed. T. Robl, A. Oberlink, & R. Jones, Coal Combustion Products (CCP’s) (pp. 3-20). Woodhead Publishing. Doi: 10.1016/B978-0-08-100945-1.00001-0
  • Gupta, AK., Banerjee, PK., Mishra, A., Satish, P., Pradip, P. 2007. Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. International Journal of Mineral Processing, 82: 126–137. Doi: 10.1016/j.minpro.2006.09.002
  • Güven, G., Tunç, B., Aydın, ŞB, Bulut, G. 2024. Effects of frothers on bubbles size and flotation performance of hydrophobic minerals. Journal of Central South University, 31:2280-2299. Doi: 10.1007/s11771-024-5685-5
  • Hacıfazlıoğlu, H. 2011. Jameson hücresinde bitümlü şlam kömürün flotasyonu için en uygun köpürtücü ve toplayıcı tipinin araştırılması. Dicle Üniversitesi Mühendislik Dergisi, 2: 3-9.
  • Kim, H., Park, CH. 2024. Estimation of Bubble Size and Gas Dispersion Property in Column Flotation. Separations, 11 (12): 331. Doi:10.3390/separations11120331
  • Kovats, P., Thevenin, D., Zahringer, K. 2020. Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column. International Journal of Multiphase Flow, 123:103174. Doi: 10.1016/j.ijmultiphaseflow.2019.103174
  • Kowalczuk, PB. 2013. Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers. Industrial & Engineering Chemistry Research, 52, 11752-11757. Doi: 10.1021/ie401263k
  • Laskowski, J. 2001. Coal flotation and fine coal utilization. The University of British Columbia, Vancouver B.C., Canada. 1st Edition. ISBN:0-444-50537-7
  • Li, D., Wu, D., Xu, F., Lai, J., Shao, L. 2018. Literature overview of Chinese research in the field of better coal utilization. Journal of Cleaner Production, 185:959-980. https://doi.org/10.1016/j.jclepro.2018.02.216
  • Liu, D., Somasundaran, P., Vasudevan TV., Harris, CC. 1994. Role of pH and dissolved mineral species in Pittsburgh No.8 coal flotation system—I. Floatability of coal. International Journal of Mineral Processing, 41(3 −4): 201−214. Doi: 10.1016/0301-7516(94)90028-0
  • Melo, F., Laskowski, JS. 2006. Fundamental properties of flotation frothers and their effect on flotation. Minerals Engineering, 19(6/7/8): 766−773. Doi: 10.1016/j.mineng.2005.09.031
  • Neethling, SJ., Lee, HT., Cilliers, JJ. 2003. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 16: 1123–1130. Doi: 10.1016/j.mineng.2003.06.014
  • Ngoroma, F., Wiese, J., Franzidis, JP. 2013. The effect of frother blends on the flotation performance of selected PGM bearing ores. Mineral Engineering, 46-47:76-82. Doi: 10.1016/j.mineng.2013.03.017.
  • Niu, C., Xia, W., Peng, Y. 2018. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation. Fuel. 228:290-296. Doi: 10.1016/j.fuel.2018.04.146
  • Nuorivaara, T., Serna-Guerrero, R. 2020. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 1. Characterization of interfacial and foam stabilization properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604:125297. Doi: 10.1016/j.cdsurfa.2020.125297.
  • Onen, V., Karaoglan, MK. 2024. Flotation of low-rank coal slimes. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 13(1):149-155. Doi: 10.28948/ngumuh.1324175
  • Ostadrahimi, M., Farrokhpay, S., Gharibi K., Dehghani, A., Aghajanloo M., 2021. Effects of flotation operational parameters on froth stability and froth recovery. The Journal of the Southern African Institute of Mining and Metallurgy, 121:11-20. Doi: 10.17159/24119717/1272/2021.
  • Park, H., Ng, CY., Wang, L. 2021. Bubble Size in a Flotation Column with Oscillatory Air Supply in the Presence of Frothers. Mineral Processing and Extractive Metallurgy Review, 43(7): 926–934. Doi: 10.1080/08827508.2021.1970549
  • Polat, M., Polat, H., Chander, S. 2003. Physical and chemical interactions in coal flotation. Minerals Engineering, 16(12): 1193-1199. Doi: 10.1016/S0301-7516(03)00099-1
  • Pudasainee, D., Kurian, V., Gupta, R. 2020. Coal: Past, Present, and Future Sustainable Use. T. M. Letcher (Ed.), Future Energy (Third edition, pp. 21-48). Elsevier. Doi: 10.1016/B978-0-08-102886-5.00002-5
  • Reis, AS., Reis Filho, AM., Demuner, LR., Barrozo, MAS. 2019. Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore. Powder Technology, 356: 884–891.
  • Schwarz, S., Grano, S. 2005. Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids and Surfaces A, 256: 157-164. Doi: 10.1016/j.colsurfa.2005.01.010
  • Shen, L., Qiao, E., Liu, L., Xue C., Liu, B., Min, F. 2022. Utilization of coal slime: Coal and kaolinite separation by classification, forward and reverse flotation method. Physicochemical Problems of Mineral Processing, 58(3):147742. DOI: 10.37190/ppmp/147742
  • Song, X., Shao, L., Yang, S., Song, R., Sun, L., Cen, S. 2015. Trace elements pollution and toxicity of airborne PM10 in a coal industrial city. Atmospheric Pollution Research, 6: 469–475. Doi: 10.5094/APR.2015.052
  • Szyszka, D. 2018. Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions. Minerals, 8: 431. Doi:10.3390/min8100431
  • Tan, J., Cheng, H., Wei, L., Wei, C., Xing, Y., Gui, X. 2019. Using low-rank coal slime as an eco-friendly replacement for carbon black filler in styrene butadiene rubber. Journal of Cleaner Production, 234: 949-960. Doi: 10.1016/j.jclepro.2019.06.221.
  • Uçar, A., Şahbaz, O., Ediz, N., Karaca, S., Ediz, İG. 2020. Recovery of coal slime by using the Knelson Concentrator. Journal of Scientific Reports-A, 45:215-224. E-ISSN:2687-6167.
  • Wei, Z., Finch, JA. 2014. Effect of solids on pulp and froth properties in flotation. Journal of Central South University, 21: 1461–1469. Doi: 10.1007/s11771-014-2086-1
  • Wheeler, TA. 1994. Coal floats by itself—doesnt it? In: Mulukutla, P.S. (Ed.), Reagents for Better Metallurgy. SME, Littleton, 131– 145.
  • Wills, BA., Finch, JA. 2016. Section 12- Froth Flotation. Ed. B. A. Wills & J. A. Finch, Wills’ Mineral Processing Technology (Eighth edition, pp. 265-380). Butterworth-Heinemann. Doi: 10.1016/B978-0-08-097053-0.00012-1
  • Xing, Y., Gui, X., Cao, Y., Wang, Y., Li, C. 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology, 305: 166-173. Doi: 10.1016/j.powtec.2016.10.003
  • Xu, Y., Qin, L., Liu, G., Zheng, M., Li, D., Yang, L. 2021. Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. Journal of Hazardous Materials, 409: 12504. Doi: 10.1016/j.jhazmat.2020.125014
  • Xu, M., Guo, F., Bao, X., Gui, X., Xing, Y., Cao, Y. 2023. Study on the strengthening mechanism of a MIBC-PEG mixed surfactant on foam stability. ACS Omega, 8(30): 27429−27438. Doi: 10.1021/acsomega.3c02863
  • Zhang, W., Zhu, S., Finch, JA. 2013. Frother partitioning in dual frother systems: development of analytical technique. International Journal of Mineral Processing, 119:75-82. Doi: 10.1016/j.minpro.2013.01.002
  • Zhang, R., Liu, S., Zheng, S. 2021. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. Journal of Hazardous Materials, 413: 125447. Doi: 10.1016/j.jhazmat.2021.125447
  • Zhu, H., Valdivieso. AL., Zhu, J., Min. F., Song, S., Corona Arroyo, MA. 2019. Air dispersion and bubble characteristics in a downflow flotation column. Mineral Processing and Extractive Metallurgy Review, 40(3): 224–229. Doi:10.1080/08827508.2018.1556159
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Separation Technologies, Environmental and Sustainable Processes
Journal Section Research Article
Authors

Meltem Eke 0009-0008-7576-4167

Nazlım İlkyaz Dinç 0000-0003-0720-667X

Ş. Beste Aydın 0000-0003-3873-6593

Publication Date November 19, 2025
Submission Date June 3, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Eke, M., Dinç, N. İ., & Aydın, Ş. B. (2025). Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi. Karaelmas Fen Ve Mühendislik Dergisi, 15(3), 108-119. https://doi.org/10.7212/karaelmasfen.1713088
AMA Eke M, Dinç Nİ, Aydın ŞB. Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi. Karaelmas Fen ve Mühendislik Dergisi. November 2025;15(3):108-119. doi:10.7212/karaelmasfen.1713088
Chicago Eke, Meltem, Nazlım İlkyaz Dinç, and Ş. Beste Aydın. “Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı Ve Yanabilir Verim Üzerindeki Etkisi”. Karaelmas Fen Ve Mühendislik Dergisi 15, no. 3 (November 2025): 108-19. https://doi.org/10.7212/karaelmasfen.1713088.
EndNote Eke M, Dinç Nİ, Aydın ŞB (November 1, 2025) Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi. Karaelmas Fen ve Mühendislik Dergisi 15 3 108–119.
IEEE M. Eke, N. İ. Dinç, and Ş. B. Aydın, “Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 15, no. 3, pp. 108–119, 2025, doi: 10.7212/karaelmasfen.1713088.
ISNAD Eke, Meltem et al. “Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı Ve Yanabilir Verim Üzerindeki Etkisi”. Karaelmas Fen ve Mühendislik Dergisi 15/3 (November2025), 108-119. https://doi.org/10.7212/karaelmasfen.1713088.
JAMA Eke M, Dinç Nİ, Aydın ŞB. Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:108–119.
MLA Eke, Meltem et al. “Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı Ve Yanabilir Verim Üzerindeki Etkisi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 15, no. 3, 2025, pp. 108-19, doi:10.7212/karaelmasfen.1713088.
Vancouver Eke M, Dinç Nİ, Aydın ŞB. Kömür Şlamlarının Flotasyonunda Köpürtücü Karışımlarının Köpük Çapı ve Yanabilir Verim Üzerindeki Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(3):108-19.