Research Article
BibTex RIS Cite

Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa

Year 2017, , 107 - 115, 05.05.2017
https://doi.org/10.17475/kastorman.296907

Abstract

Detailed data
about forest stands are needed for economic and silvicultural interpretation of
forest enterprises for a long time. Diameter distribution models (DDMs) allow
to predict number of trees, basal area and stand volume at level of diameter
classes. So, both effects of silvicultural treatments on forest stands and
economic analysis of forest enterprise can be made with more details. In this
study, diameter distributions were predicted by three-parameter Weibull
function. The parameters of the Weibull function were predicted by maximum
likelihood and percentile-based methods. According to the comparison based on
Reynold’s error index, the method based on 31th and 63rd
percentiles with an average success order of 2.61 was assessed as the most
successful in prediction of parameters of the Weibull function. The eligible of
the predicted distribution by the most successful method for the observed
distribution was tested by Kolmogorov-Simirnov analyze, and the results showed
that the Weibull function was suitable for 305 of total 312 sample plots. 

References

  • Akalp T. 1982. Simulasyon tekniği ve meşcere modelleri. Journal of the Faculty of Forestry Istanbul University, 32(1), 166-172.
  • Bliss C.I., Reinker K.A. 1964. A lognormal approach to diameter distributions in even-aged stands. Forest Science, 10(3), 350-360.
  • Bolat F. 2015. Bursa-Kestel Orman İşletme Şefliği içerisindeki meşcereler için çap dağılım modellerinin geliştirilmesi. Yüksek Lisans Tezi, ÇKÜ Fen Bilimleri Enstitüsü, 77 s. Çankırı.
  • Borders B.E., Souter R.A., Bailey R.L., Ware K.D. 1987. Percentile based distributions characterize forest tables. Forest Science, 33(2), 570-576.
  • Clutter J.L., Bennet F.A. 1965. Diameter distributions in old-field slash pine plantation. Georgia Forest Research Council, Report No: 13, 9p. USA.
  • Ercanlı İ., Yavuz H. 2010. Doğu ladini (Picea Orientalis (L.) Link)-Sarıçam (Pinus Sylvestris L.) karışık meşcerelerinde çap dağılımlarının olasılık yoğunluk fonksiyonları ile belirlenmesi. Kastamonu Orman Fakültesi Dergisi, 10(1), 68-83.
  • Ercanlı İ., Bolat F., Kahriman A. 2013. Comparing parameter recovery methods for diameter distribution models of Oriental spruce (Picea orientalis (L.) Link.) and Scotch pine (Pinus sylvestris L.) mixed stands located Trabzon and Giresun Forest Regional Directorate. International Caucasian Forestry Symposium (24-26 October), 119-126, Artvin, Turkey.
  • Frazier J.R. 1981. Compatible whole-stand and diameter distribution models for Loblolly pine plantations. PhD thesis, Virginia Polytechnic Institute and State University, 125 p. Blacksburg.
  • Gorgoso-Varela J.J. 2015. Comparison of estimation methods for fitting Weibull distribution to the natural stand of Oluwa forest reserve, Onda State, Nigeria. Journal of Research in Forestry, Wildlife and Environment, 7(2), 81-90.
  • Johnson N.L. 1949. System of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149-176.
  • Kangas A., Maltamo M. 2000. Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica, 34(4), 381-398.
  • Karakaş R. 2013. Önsen doğal Fıstıkçamı (Pinus pinea L.) meşcerelerinde çap dağılımlarının modellenmesi. Yüksek Lisans Tezi, KSÜ Fen Bilimleri Enstitüsü, 67s. Kahramanmaraş.
  • Knowe S.A., Ahrens G.R., DeBell D.S. 1997. Comparison of diameter-distribution prediction, stand-table projection and individual-tree growth modeling approaches for young red alder plantations. Forest Ecology and Management, 98, 49-60.
  • Lei Y. 2008. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese Pine (Pinus tabulaeformis). Journal of Forest Science, 54(12), 566-571.
  • Liu C., Zhang S.Y., Lei Y., Newton P.F., Zhang L. 2004. Evaluation of tree methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Canadian Journal of Forest Research, 34(12), 2424-2432.
  • Liu C., Beaulieu J., Prégent G., Zhang S.Y. 2009. Applications and comparison of six methods for predicting parameters of the Weibull function in the Uthinned Picea glauca plantations. Scandinavian Journal of Forest Research, 24(1), 67-75.
  • Maltamo M., Kangas A., Uuttera J., Torniainen T., Saramäki J. 2000. Comparison of percentile based prediction methods and Weibull distribution in describing diameter distribution of heterogenous Scots pine stands. Forest Ecology and Management 133: 263–274.
  • Mısır N. 2003. Karaçam ağaçlarına ilişkin büyüme modelleri. Doktora tezi, KTÜ Fen Bilimleri Enstitüsü, 209s. Trabzon.
  • Nelson T.C. 1964. Diameter distribution and growth of Loblolly pine. Forest Science, 10(1), 105-114.
  • OGM 2005. Orman envanter verileri.
  • Özdemir G.A. 2015. Modeling the diameter distribution of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) stands. Journal of the Faculty of Forestry Istanbul University, 66(2), 548-558.
  • Packard K.C. 2000. Modeling tree diameter distributions for mixed-species conifer forests in the Northeast United States. Master thesis, State University of New York, 129p. USA.
  • Podlaski R., Zasada M. 2008. Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies–Fagus forests in the Swietokrzyski National Park (Poland). European Journal of Forest Research, 127(6), 455–463.
  • Poudell K.P. 2011. Evaluation of methods to predict Weibull parameters for characterizing dimater distributions. Master Thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical Collage, 60p. USA.
  • Reynolds M.R., Thomas B.E., Won-Chin H. 1988. Goodness-of-fit tests and model selection procedures for diameter distribution models. Forest Science, 34(2), 373-399.
  • Sakıcı O. E., Gülsunar M. 2012. Diameter distribution of Bornmullerian fir in mixed stands. Kastamonu University, Journal of Forestry Faculty, Special Issue, 263-270.
  • Sönmez T., Karahalil U., Günlü A., Şahin A. 2015. Aynı yaşlı ve saf Doğu ladini (Picea orientalis (L.) Link.) meşcerelerinde çap dağılımlarının bonitet ve yaş sınıfları için değerlendirilmesi. Kastamonu Üni. Orman Fakültesi Dergisi, 15 (1), 26-36.
  • Vanclay J.K. 1994. Modelling forest growth: Applications to mixed tropical forests. ISBN: 0851989136, 978-0851989136, 312p. Denmark.
  • Weibull W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics, (18), 293–297.
  • Zarnoch S.J., Dell T.R. 1985. An evaluation of percentiles and maximum likelihood estimators of Weibull parameters. Forest Science, 31(1), 260–268.
  • Zhang X., Lei Y. 2010. A linkage among whole-stand model, individual-tree model and diameter-distribution model. Journal of Forest Science, 56(12), 600-608.

Bursa-Kestel Ormanlarında Çap Dağılımlarının Weibull Fonksiyonu ile Modellenmesi

Year 2017, , 107 - 115, 05.05.2017
https://doi.org/10.17475/kastorman.296907

Abstract

Orman işletmelerinin uzun dönemli ekonomik ve
silvikültürel değerlendirmelerinin yapılabilmesi için meşcereler hakkında
detaylı bilgilere ihtiyaç duyulmaktadır. Çap dağılım modelleri, meşcere ağaç
sayısı, göğüs yüzeyi ve hacminin çap sınıfları düzeyinde elde edilmesine imkân
sunmaktadır. Böylece, hem silvikültürel müdahalelerin meşcere yapıları üzerine
etkisi hem de orman işletmelerinin ekonomik analizi daha detaylı
yapılabilmektedir. Bu çalışmada çap dağılımları üç parametreli Weibull
fonksiyonu ile tahmin edilmiştir. Weibull fonksiyonuna ilişkin parametreler;
maksimum olabilirlik ile dağılımın belirli yüzdeliklerini esas alan eşitliklere
dayanan farklı yöntemler kullanılarak tahmin edilmiştir. Farklı parametre
tahmin yöntemlerini karşılaştırmak üzere Reynolds hata indeks değerine göre yapılan
karşılaştırmalarda; %31 ve %63’lük değerlerini esas alan yöntem, 2.61 ortalama
başarı sırası ile Weibull fonksiyonuna ilişkin parametrelerin tahmin
edilmesinde en başarılı yöntem olarak belirlenmiştir. En başarılı olarak
belirlenen bu yöntem ile tahmin edilen dağılımın örnek alanlardaki çap
dağılımına uygunluğu Kolmogorov-Simirnov analizine göre test edilmiş olup
sonuçlara göre Weibull fonksiyonu 312 örnek alanın 305’inde istatistiksel
olarak uygun bulunmuştur. 

References

  • Akalp T. 1982. Simulasyon tekniği ve meşcere modelleri. Journal of the Faculty of Forestry Istanbul University, 32(1), 166-172.
  • Bliss C.I., Reinker K.A. 1964. A lognormal approach to diameter distributions in even-aged stands. Forest Science, 10(3), 350-360.
  • Bolat F. 2015. Bursa-Kestel Orman İşletme Şefliği içerisindeki meşcereler için çap dağılım modellerinin geliştirilmesi. Yüksek Lisans Tezi, ÇKÜ Fen Bilimleri Enstitüsü, 77 s. Çankırı.
  • Borders B.E., Souter R.A., Bailey R.L., Ware K.D. 1987. Percentile based distributions characterize forest tables. Forest Science, 33(2), 570-576.
  • Clutter J.L., Bennet F.A. 1965. Diameter distributions in old-field slash pine plantation. Georgia Forest Research Council, Report No: 13, 9p. USA.
  • Ercanlı İ., Yavuz H. 2010. Doğu ladini (Picea Orientalis (L.) Link)-Sarıçam (Pinus Sylvestris L.) karışık meşcerelerinde çap dağılımlarının olasılık yoğunluk fonksiyonları ile belirlenmesi. Kastamonu Orman Fakültesi Dergisi, 10(1), 68-83.
  • Ercanlı İ., Bolat F., Kahriman A. 2013. Comparing parameter recovery methods for diameter distribution models of Oriental spruce (Picea orientalis (L.) Link.) and Scotch pine (Pinus sylvestris L.) mixed stands located Trabzon and Giresun Forest Regional Directorate. International Caucasian Forestry Symposium (24-26 October), 119-126, Artvin, Turkey.
  • Frazier J.R. 1981. Compatible whole-stand and diameter distribution models for Loblolly pine plantations. PhD thesis, Virginia Polytechnic Institute and State University, 125 p. Blacksburg.
  • Gorgoso-Varela J.J. 2015. Comparison of estimation methods for fitting Weibull distribution to the natural stand of Oluwa forest reserve, Onda State, Nigeria. Journal of Research in Forestry, Wildlife and Environment, 7(2), 81-90.
  • Johnson N.L. 1949. System of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149-176.
  • Kangas A., Maltamo M. 2000. Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica, 34(4), 381-398.
  • Karakaş R. 2013. Önsen doğal Fıstıkçamı (Pinus pinea L.) meşcerelerinde çap dağılımlarının modellenmesi. Yüksek Lisans Tezi, KSÜ Fen Bilimleri Enstitüsü, 67s. Kahramanmaraş.
  • Knowe S.A., Ahrens G.R., DeBell D.S. 1997. Comparison of diameter-distribution prediction, stand-table projection and individual-tree growth modeling approaches for young red alder plantations. Forest Ecology and Management, 98, 49-60.
  • Lei Y. 2008. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese Pine (Pinus tabulaeformis). Journal of Forest Science, 54(12), 566-571.
  • Liu C., Zhang S.Y., Lei Y., Newton P.F., Zhang L. 2004. Evaluation of tree methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Canadian Journal of Forest Research, 34(12), 2424-2432.
  • Liu C., Beaulieu J., Prégent G., Zhang S.Y. 2009. Applications and comparison of six methods for predicting parameters of the Weibull function in the Uthinned Picea glauca plantations. Scandinavian Journal of Forest Research, 24(1), 67-75.
  • Maltamo M., Kangas A., Uuttera J., Torniainen T., Saramäki J. 2000. Comparison of percentile based prediction methods and Weibull distribution in describing diameter distribution of heterogenous Scots pine stands. Forest Ecology and Management 133: 263–274.
  • Mısır N. 2003. Karaçam ağaçlarına ilişkin büyüme modelleri. Doktora tezi, KTÜ Fen Bilimleri Enstitüsü, 209s. Trabzon.
  • Nelson T.C. 1964. Diameter distribution and growth of Loblolly pine. Forest Science, 10(1), 105-114.
  • OGM 2005. Orman envanter verileri.
  • Özdemir G.A. 2015. Modeling the diameter distribution of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) stands. Journal of the Faculty of Forestry Istanbul University, 66(2), 548-558.
  • Packard K.C. 2000. Modeling tree diameter distributions for mixed-species conifer forests in the Northeast United States. Master thesis, State University of New York, 129p. USA.
  • Podlaski R., Zasada M. 2008. Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies–Fagus forests in the Swietokrzyski National Park (Poland). European Journal of Forest Research, 127(6), 455–463.
  • Poudell K.P. 2011. Evaluation of methods to predict Weibull parameters for characterizing dimater distributions. Master Thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical Collage, 60p. USA.
  • Reynolds M.R., Thomas B.E., Won-Chin H. 1988. Goodness-of-fit tests and model selection procedures for diameter distribution models. Forest Science, 34(2), 373-399.
  • Sakıcı O. E., Gülsunar M. 2012. Diameter distribution of Bornmullerian fir in mixed stands. Kastamonu University, Journal of Forestry Faculty, Special Issue, 263-270.
  • Sönmez T., Karahalil U., Günlü A., Şahin A. 2015. Aynı yaşlı ve saf Doğu ladini (Picea orientalis (L.) Link.) meşcerelerinde çap dağılımlarının bonitet ve yaş sınıfları için değerlendirilmesi. Kastamonu Üni. Orman Fakültesi Dergisi, 15 (1), 26-36.
  • Vanclay J.K. 1994. Modelling forest growth: Applications to mixed tropical forests. ISBN: 0851989136, 978-0851989136, 312p. Denmark.
  • Weibull W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics, (18), 293–297.
  • Zarnoch S.J., Dell T.R. 1985. An evaluation of percentiles and maximum likelihood estimators of Weibull parameters. Forest Science, 31(1), 260–268.
  • Zhang X., Lei Y. 2010. A linkage among whole-stand model, individual-tree model and diameter-distribution model. Journal of Forest Science, 56(12), 600-608.
There are 31 citations in total.

Details

Journal Section Articles
Authors

Ferhat Bolat

İlker Ercanlı

Publication Date May 5, 2017
Published in Issue Year 2017

Cite

APA Bolat, F., & Ercanlı, İ. (2017). Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa. Kastamonu University Journal of Forestry Faculty, 17(1), 107-115. https://doi.org/10.17475/kastorman.296907
AMA Bolat F, Ercanlı İ. Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa. Kastamonu University Journal of Forestry Faculty. March 2017;17(1):107-115. doi:10.17475/kastorman.296907
Chicago Bolat, Ferhat, and İlker Ercanlı. “Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa”. Kastamonu University Journal of Forestry Faculty 17, no. 1 (March 2017): 107-15. https://doi.org/10.17475/kastorman.296907.
EndNote Bolat F, Ercanlı İ (March 1, 2017) Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa. Kastamonu University Journal of Forestry Faculty 17 1 107–115.
IEEE F. Bolat and İ. Ercanlı, “Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa”, Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, pp. 107–115, 2017, doi: 10.17475/kastorman.296907.
ISNAD Bolat, Ferhat - Ercanlı, İlker. “Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa”. Kastamonu University Journal of Forestry Faculty 17/1 (March 2017), 107-115. https://doi.org/10.17475/kastorman.296907.
JAMA Bolat F, Ercanlı İ. Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa. Kastamonu University Journal of Forestry Faculty. 2017;17:107–115.
MLA Bolat, Ferhat and İlker Ercanlı. “Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa”. Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, 2017, pp. 107-15, doi:10.17475/kastorman.296907.
Vancouver Bolat F, Ercanlı İ. Modeling Diameter Distributions by Using Weibull Function in Forests Located Kestel-Bursa. Kastamonu University Journal of Forestry Faculty. 2017;17(1):107-15.

14178  14179       14165           14166           14167            14168