Research Article
BibTex RIS Cite

Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region

Year 2017, , 132 - 142, 05.05.2017
https://doi.org/10.17475/kastorman.296912

Abstract

Land use strongly influences soil properties, and
unsuitable practices lead to degradation of soil and environmental quality.
Main aim of this study was to assess the impact of different land uses on some
soil properties, soil organic carbon (C) and total nitrogen (N) contents and
stock capacities in Kastamonu, Turkey. Mature and young fir stands and adjacent
pasture and agriculture sites were used to study the differences in some soil
properties and soil organic C and N contents and stock capacities. Mineral soil
samples were taken from two soil depths (the upper soil part 0-10 cm and the
lower soil part 10-20 cm), and analysed for pH, texture, water holding capacity
(WHC), salt, lime, organic matter (OM), P and K concentrations, total soil
organic C and total N content, and stock capacities. Results showed that
for the soil upper part, the agriculture site had
the lowest clay, silt, WHC, pH, P, K and OM, whereas it had the highest sand
content. Most of these soil factors were highest in the soil from mature fir
stands. As for the lower soil part, there were no clear indications among the
land-use types. However, the agriculture site had the highest clay, silt and
soil pH, whereas the pasture site showed the lowest clay, silt, P and K
contents. The mature and young fir stands always showed the highest mean soil C
and N contents and stock capacities either at the upper or the lower soil
parts, followed by the pasture and the agriculture sites. However, all soil
depth was considered (0-20 cm), mean soil organic C stock capacity was highest
for the pasture site (50.2 Mg C ha-1), followed by the young fir
site (48.6 Mg C ha-1), the mature fir site (47.4 Mg C ha-1),
and the agriculture site (32.3 Mg C ha-1). Mean soil total N stock capacity
was highest for the young fir site (5.61 Mg N ha-1), followed by the
pasture site (5.09 Mg N ha-1), the mature fir site (4.45 Mg N ha-1),
and the agriculture site (3.33 Mg N ha1).  

References

  • Allen S.E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Arevalo C. B. M., Bhatti J. S., Chang S. X., Sidders D. 2009. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management 257, 1776-1785.
  • Batlle-Aguilar J., Brovelli A., Porporato A., Barry D. A. 2011. Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy for Sustainable Development 31(2): 251–274
  • Baumert K., Pershing J., Herzog T., Markoff M. 2004. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA.
  • Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465.
  • Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. 1999. Carbon sequestration in soils, J. Soil Water Conservation. 54, 382–389.
  • Curtis P.-S., Hanson P.-J., Bolstad P., Barford C., Randolph J.-C., Schmid H.-P., Wilson K.-B. 2002. Biometric and eddy covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forestry Meteorology 113, 3–19.
  • Davidson E. A., Ackerman, I. L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193.
  • de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.
  • Dumanski J. 2004. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change 65, 255–261.
  • Evrendilek F, Celik I, Kilic S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments. 59, 743–752
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8, 345–360.
  • Gülçür F. 1974. Soil physical and chemical analysis methods. Istanbul University Forestry Faculty Publication no. 221, Kutulmus Press, Istanbul, Turkey, pp. 225.
  • Hobbie S.E. 2008. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89 (9), 2633-2644.
  • Houghton R.A. 1990. The future role of tropical forest in affecting the carbon dioxide concentration of the atmosphere, Ambio 19, 204.
  • Houghton R.A. 1999. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus 51B, 298–313.
  • IPCC 1996. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Chapter 5, Land-use Change and Forestry, p 76.
  • Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. 1999. Comparative performance of exotic and indigenous forest species for tropical semi evergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degradation and Development 10, 241–249.
  • Jiang C., Yu G., Fang H., Cao G., Li Y. 2010. Shortterm effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment 44 (24), 2920-2926.
  • Kimble J. M., Lal R., Follett R. R. 2002. Agricultural Practices and policy options for carbon sequestration: what we know and where we need to go. In Agricultural practices and policies for carbon sequestration in soil eds by Kimbel, J.M., R. Lal, and R.F. Follett. New York, Lewis Publishers, p 512.
  • Lal R. 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development 14, 309–322.
  • Lecointe S., Claude NYS, Christian W, Françoise F, Sandrine H, Paula R, Stéphane F. 2006. Estimation of carbon stocks in a beech forest (Fougères Forest - W. France): extrapolation from the plots to the whole forest. Annals of Forest Science 63, 139-148.
  • Lee J., Hopmans J.W., Rolston D.E., Baer S.G., Six J. 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture Ecosystems and Environment 134, 251-256.
  • Motavalli P.P., Discekici H., Kuhn J. 2000. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agriculture Ecosystem and Environment. 79, 17–27.
  • Murty D., Kirschbaum M.U.F., McMurtrie R.E., McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105–123.
  • Osher L.J., Matson P.A., Amundson R. 2003. Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65, 213-232.
  • Prévost M. 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Journal of Soil Science Society of America. 68, 943–949
  • Reicosky D.C., Dugas W.A., Torbert H.A. 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research. 41, 105–118.
  • Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. 1994. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecological Applications. 4, 363–377.
  • Sariyildiz T., Savacı G., Kravkaz İ.S. 2016. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwest of Turkey. iForest - Biogeosciences and Forestry. 9, 165-170.
  • Singh B.R., Lal R. 2005. The potential of soil carbon sequestration through improved management practices in Norway. Environment, Development and Sustainability. 7, 161–184.
  • Sonja A.H., Brandt C.C., Sardine P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Journal of Soil Science Society of America. 69, 51–56.
  • Veldkamp E. 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Journal of Soil Science Society of America. 58, 175–180.
  • Vitousek P.M., Sanford R.L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics. 17, 137.

Kastamonu Yöresinde Farklı Arazi Kullanımının (Yaşlı ve Genç Göknar Meşcereleri-Mera-Tarım Alanları) Toprak Organik Karbon ve Toplam Azot Depolama Kapasitesine Etkileri

Year 2017, , 132 - 142, 05.05.2017
https://doi.org/10.17475/kastorman.296912

Abstract

Arazi kullanımı önemli derecede toprak
özelliklerini etkilemekte ve uygun olmayan uygulamalar toprağın ve çevre
kalitesinin bozulmasına yol açmaktadır. Kastamonu Bölgesinde gerçekleştirilen
bu çalışmada, farklı arazi kullanımının bazı toprak özellikleri, organik karbon
ve azot miktarları ve depolama kapasiteleri üzerine olan etkilerinin
araştırılması amaçlanmıştır. Bu amaçla, yaşlı ve genç göknar meşçereleri ile
bitişiğindeki tarım ve mera alanların bazı toprak özellikleri ile karbon ve
azot depolama kapasiteleri belirlenmiştir. Mineral toprak örnekleri üst (0- 10
cm) ve alt (10-20 cm) olmak üzere iki farklı toprak derinlik kademesinden
alınmış olup, sırasıyla bu topraklarda tekstür, su tutma kapasitesi,
elektriksel iletkenlik, kireç miktarı, organik madde, fosfor (P) ve potasyum
(K) konsantrasyonları yanında toplam organik karbon ve azot miktarları analiz
edilmiştir. Sonuçlar incelendiğinde, üst toprak kısımlarında, en düşük kil,
toz, su tutma kapasitesi, pH, P, K ve organik madde miktarı ile en yüksek kum
miktarı tarım alanları topraklarında tespit edilmiştir. Üst toprak
özelliklerinin çoğunluğu yaşlı veya genç göknar meşcerelerinde daha yüksek
belirlenmiştir. Alt toprak özellikleri değerlendirildiğinde ise, farklı arazi
kullanımları arasında belirgin bir farklılık tespit edilmemekle beraber, tarım
alanları topraklarının en yüksek kil, toz ve pH değerlerine, mera alanları
topraklarının ise en düşük kil, toz, P ve K miktarına sahip olduğu görülmüştür.
Yaşlı ve genç göknar meşcerelerinin üst ve alt toprakları en yüksek organik
karbon ve azot miktarı ve depolama kapasitesine sahip olurken, bu değerleri
mera alanları ve tarım alanları izlemiştir. Bununla beraber, tüm toprak
derinliği değerlendirildiğinde (0- 20 cm), 
ortalama toprak organik karbon depolama kapasitesi en yüksek mera
alanlarında (50.2 Mg C ha-1), bunu sırasıyla genç göknar meşcereleri
(48.6 Mg C ha-1), yaşlı göknar meşcereleri (47.4 Mg C ha-1)
ve tarım alanları (32.3 Mg C ha-1) takip etmiştir. Ortalama toplam
azot depolaması ise en yüksek genç göknar meşcerelerinde (5.61 Mg N ha-1)
belirlenirken, bunu sırasıyla mera alanları (5.09 Mg N ha-1), yaşlı
göknar meşcereleri (4.45 Mg N ha-1) ve tarım alanları (3.33 Mg N ha-1)’na
ait topraklar izlemiştir. 

References

  • Allen S.E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
  • Arevalo C. B. M., Bhatti J. S., Chang S. X., Sidders D. 2009. Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management 257, 1776-1785.
  • Batlle-Aguilar J., Brovelli A., Porporato A., Barry D. A. 2011. Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy for Sustainable Development 31(2): 251–274
  • Baumert K., Pershing J., Herzog T., Markoff M. 2004. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA.
  • Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465.
  • Bruce J.P., Frome M., Haites E., Janzen H., Lal R., Paustian K. 1999. Carbon sequestration in soils, J. Soil Water Conservation. 54, 382–389.
  • Curtis P.-S., Hanson P.-J., Bolstad P., Barford C., Randolph J.-C., Schmid H.-P., Wilson K.-B. 2002. Biometric and eddy covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forestry Meteorology 113, 3–19.
  • Davidson E. A., Ackerman, I. L. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193.
  • de Moraes J.F.L., Volkoff B., Cerri C.C., Bernoux M. 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil, Geoderma 70, 63–81.
  • Dumanski J. 2004. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change 65, 255–261.
  • Evrendilek F, Celik I, Kilic S. 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments. 59, 743–752
  • Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8, 345–360.
  • Gülçür F. 1974. Soil physical and chemical analysis methods. Istanbul University Forestry Faculty Publication no. 221, Kutulmus Press, Istanbul, Turkey, pp. 225.
  • Hobbie S.E. 2008. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89 (9), 2633-2644.
  • Houghton R.A. 1990. The future role of tropical forest in affecting the carbon dioxide concentration of the atmosphere, Ambio 19, 204.
  • Houghton R.A. 1999. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus 51B, 298–313.
  • IPCC 1996. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Chapter 5, Land-use Change and Forestry, p 76.
  • Islam K.R., Kamaluddin M., Bhuiyan M.K., Badruddin A. 1999. Comparative performance of exotic and indigenous forest species for tropical semi evergreen degraded forest land reforestation in Chittagong, Bangladesh, Land Degradation and Development 10, 241–249.
  • Jiang C., Yu G., Fang H., Cao G., Li Y. 2010. Shortterm effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment 44 (24), 2920-2926.
  • Kimble J. M., Lal R., Follett R. R. 2002. Agricultural Practices and policy options for carbon sequestration: what we know and where we need to go. In Agricultural practices and policies for carbon sequestration in soil eds by Kimbel, J.M., R. Lal, and R.F. Follett. New York, Lewis Publishers, p 512.
  • Lal R. 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development 14, 309–322.
  • Lecointe S., Claude NYS, Christian W, Françoise F, Sandrine H, Paula R, Stéphane F. 2006. Estimation of carbon stocks in a beech forest (Fougères Forest - W. France): extrapolation from the plots to the whole forest. Annals of Forest Science 63, 139-148.
  • Lee J., Hopmans J.W., Rolston D.E., Baer S.G., Six J. 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture Ecosystems and Environment 134, 251-256.
  • Motavalli P.P., Discekici H., Kuhn J. 2000. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer, Agriculture Ecosystem and Environment. 79, 17–27.
  • Murty D., Kirschbaum M.U.F., McMurtrie R.E., McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105–123.
  • Osher L.J., Matson P.A., Amundson R. 2003. Effect of land use change on soil carbon in Hawaii. Biogeochemistry 65, 213-232.
  • Prévost M. 2004. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Journal of Soil Science Society of America. 68, 943–949
  • Reicosky D.C., Dugas W.A., Torbert H.A. 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil and Tillage Research. 41, 105–118.
  • Reiners W.A., Bouwman A.F., Parsons W.F.J., Keller M. 1994. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecological Applications. 4, 363–377.
  • Sariyildiz T., Savacı G., Kravkaz İ.S. 2016. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwest of Turkey. iForest - Biogeosciences and Forestry. 9, 165-170.
  • Singh B.R., Lal R. 2005. The potential of soil carbon sequestration through improved management practices in Norway. Environment, Development and Sustainability. 7, 161–184.
  • Sonja A.H., Brandt C.C., Sardine P.M. 2005. Using soil physical and chemical properties to estimate bulk density. Journal of Soil Science Society of America. 69, 51–56.
  • Veldkamp E. 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Journal of Soil Science Society of America. 58, 175–180.
  • Vitousek P.M., Sanford R.L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics. 17, 137.
There are 34 citations in total.

Details

Journal Section Articles
Authors

Temel Sarıyıldız

Gamze Savacı

Züleyha Maral This is me

Publication Date May 5, 2017
Published in Issue Year 2017

Cite

APA Sarıyıldız, T., Savacı, G., & Maral, Z. (2017). Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty, 17(1), 132-142. https://doi.org/10.17475/kastorman.296912
AMA Sarıyıldız T, Savacı G, Maral Z. Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty. March 2017;17(1):132-142. doi:10.17475/kastorman.296912
Chicago Sarıyıldız, Temel, Gamze Savacı, and Züleyha Maral. “Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region”. Kastamonu University Journal of Forestry Faculty 17, no. 1 (March 2017): 132-42. https://doi.org/10.17475/kastorman.296912.
EndNote Sarıyıldız T, Savacı G, Maral Z (March 1, 2017) Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty 17 1 132–142.
IEEE T. Sarıyıldız, G. Savacı, and Z. Maral, “Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region”, Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, pp. 132–142, 2017, doi: 10.17475/kastorman.296912.
ISNAD Sarıyıldız, Temel et al. “Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region”. Kastamonu University Journal of Forestry Faculty 17/1 (March 2017), 132-142. https://doi.org/10.17475/kastorman.296912.
JAMA Sarıyıldız T, Savacı G, Maral Z. Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty. 2017;17:132–142.
MLA Sarıyıldız, Temel et al. “Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region”. Kastamonu University Journal of Forestry Faculty, vol. 17, no. 1, 2017, pp. 132-4, doi:10.17475/kastorman.296912.
Vancouver Sarıyıldız T, Savacı G, Maral Z. Effect of Different Land Uses (Mature and Young Fir Stands-Pasture and Agriculture Sites) on Soil Organic Carbon and Total Nitrogen Stock Capacity in Kastamonu Region. Kastamonu University Journal of Forestry Faculty. 2017;17(1):132-4.

14178  14179       14165           14166           14167            14168