Research Article
BibTex RIS Cite

Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers

Year 2017, , 334 - 342, 28.09.2017
https://doi.org/10.17475/kastorman.329427

Abstract

Abstract

Aim of study: This study compared
the effects of boron-based fire retardants and synergistic influential compounds
used in medium-density fiberboard waste (MDFw) filled high-density polyethylene
(HDPE) composites.

Area of study: To improve the use
of boron based and fire retardant materials in wood plastic composite.

Material and Methods: Fiber waste, HDPE
and  boron- based compounds were used to
produce wood plastic composites. Mechanical thermal and fire properties of the
produced composites were investigated.

Main results: When fire retardants were used in composites, the
mechanical properties of composite with MAPE increased slightly, also the
modulus of elasticity of composites increased considerably. Boron-based fire
retardants and other synergistic influential compounds decreased the burning
rate and limiting oxygen index (LOI) properties of the composites.











Research highlights: The use of the zinc
borate in the MDFw-based wood plastic composite had the best results on the
mechanical and fire-retardant properties.

References

  • 1. ASTM D618 (2013). “Standard practice for conditioning plastics for testing,” ASTM International, West Conshohocken, USA.
  • 2. ASTM D256 (2007). “Standard test method for determining the Izod pendulum impact resistance of plastics,” ASTM International, West Conshohocken, USA.
  • 3. ASTM D638. (2007). “Standard test method for tensile properties of plastics,” ASTM International, West Conshohocken, USA.
  • 4. ASTM D790 (2007). “Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials,” ASTM International, West Conshohocken, USA.
  • 5. ASTM D2240 (2010). “Standard test method for rubber property – Durometer hardness,” ASTM International, West Conshohocken, USA.
  • 6. ASTM D2863-10 (2000). “Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index),” ASTM International, West Conshohocken, USA.
  • 7. ASTM D635 (2014). “Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position,” ASTM International, West Conshohocken, USA.
  • 8. Ayrilmis, N. 2013. Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites. Composites Part B-Engineering, 44(1): 745-749.
  • 9. Ayrilmis, N., Akbulut, T., Dundar, T., White, R. H., Mengeloglu, F., Buyuksari, U., Candan, Z., and Avci, E. 2012. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Construction and Building Materials, 33: 63-69.
  • 10. Ayrilmis, N., Benthien, J. T., Thoemen, H., and White, R. H. 2011. Properties of Flat-Pressed Wood Plastic Composites Containing Fire Retardants. Journal of Applied Polymer Science, 122(5): 3201-3210.
  • 11. Cavdar, A. D., Kalaycioglu, H., and Mengeloglu, F. 2016. Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. Journal of Composite Materials, 50(12): 1627-1634.
  • 12. Cavdar, A. D., Mengeloglu, F., and Karakus, K. 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60: 6-12.
  • 13. Cavdar, A. D., Mengeloglu, F., Karakus, K., and Tomak, E. D. 2014. Effect of Chemical Modification with Maleic, Propionic, and Succinic Anhydrides on Some Properties of Wood Flour Filled HDPE Composites. Bioresources, 9(4): 6490-6503.
  • 14. Chai, Y. B., Liu, J. L., and Xing, Z. 2012. Dimensional Stability, Mechanical Properties and Fire Resistance of MUF-Boron Treated Wood. Material and Manufacturing Technology Ii, Pts 1 and 2, 341-342: 80-84.
  • 15. Chiang, W. Y., and Hu, H. C. H. 2001. Phosphate-containing flame-retardant polymers with good compatibility to polypropylene. II. Effect of the flame-retardant polymers on polypropylene. Journal of Applied Polymer Science, 82(10): 2399-2403.
  • 16. Chiu, S. H., and Wang, W. K. 1998. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer, 39(10): 1951-1955.
  • 17. Hamid, M. R. Y., and Ahmad, S. 2011. Effect of Flame Retardants on Wood Plastic Composites-HDPE Based. Composite Science and Technology, Pts 1 and 2, 471-472: 640-645.
  • 18. Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Cuesta, J. M., and Espiell, F. 2007. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polymer Degradation and Stability, 92(6): 1082-1087.
  • 19. Karade, S. R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24(8): 1323-1330. 20. Klyosov, A. A. 2007. Wood-plastic composites: John Wiley and Sons.
  • 21. Kurt, R., and Mengeloglu, F. 2011. Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites. Turkish Journal of Agriculture and Forestry, 35(2): 155-163.
  • 22. Kurt, R., Mengeloglu, F., and Meric, H. 2012. The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites. European Journal of Wood and Wood Products, 70(1-3): 177-182.
  • 23. Leu, S. Y., Yang, T. H., Lo, S. F., and Yang, T. H. 2012. Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites (WPCs). Construction and Building Materials, 29: 120-127.
  • 24. Levan, S. L. 1984. Chemistry of Fire Retardancy. Advances in Chemistry Series(207): 531-574.
  • 25. Matuana, L. M., Balatinecz, J. J., Sodhi, R. N. S., and Park, C. B. 2001. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology, 35(3): 191-201.
  • 26. Mengeloglu, F., and Kabakci, A. 2008. Determination of thermal properties and morphology of eucalyptus wood residue filled high density polyethylene composites. International Journal of Molecular Sciences, 9(2): 107-119.
  • 27. Nikolaeva, M., and Karki, T. 2016. Influence of fire retardants on the reaction-to-fire properties of coextruded wood-polypropylene composites. Fire and Materials, 40(4): 535-543.
  • 28. Sain, M., Park, S. H., Suhara, F., and Law, S. 2004. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2): 363-367.
  • 29. Shen, K. K., Kochesfahani, S., and Jouffret, F. 2008. Zinc borates as multifunctional polymer additives. Polymers for Advanced Technologies, 19(6): 469-474.
  • 30. Stark, N. M., White, R. H., Mueller, S. A., and Osswald, T. A. 2010. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polymer Degradation and Stability, 95(9): 1903-1910.
  • 31. Suppakarn, N., and Jarukumjorn, K. 2009. Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Composites Part B-Engineering, 40(7): 613-618.
  • 32. Wu, G. F., and Xu, M. 2014. Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites. Bioresources, 9(3): 4173-4193.
  • 33. Wu, Z. P., Hu, Y. C., and Shu, W. Y. 2010. Effect of Ultrafine Zinc Borate on the Smoke Suppression and Toxicity Reduction of a Low-Density Polyethylene/Intumescent Flame-Retardant System. Journal of Applied Polymer Science, 117(1): 443-449.

Geri Dönüşüm Liflerinin Kullanıldığı Odun Plastik Kompozitlerin Yangın, Termal ve Mekanik Özellikleri Üzerine Yangın Geciktiricilerin Etkileri

Year 2017, , 334 - 342, 28.09.2017
https://doi.org/10.17475/kastorman.329427

Abstract

Özet

Çalışmanın amacı: Bu çalışmada
lifsel atıklar ile üretilen odun plastik kompozitlerde bor esaslı (Borik asit,
boraks ve çinko borat) yangın geciktiriciler ve sinerjik etkili bileşiklerin
(antimon trioksit, amonyum fosfat ve magnezyum hidroksit)  etkileri araştırıldı. Bu çalışmada,
kompozitlerin üretilmesinde orta yoğunluklu lif levhaların (MDF) atıkları ve
yüksek yoğunluklu polietilen (YYPE) plastik hammadde kullanılmıştır.

Çalışma alanı: odun plastik kompozitlerin yangına karşı direncinin
geliştirilmesi.

Materyal ve Yöntem:
Odun
plastik kompozitlerin üretilmesi için lifsel atıklar, HDPE ve bor esaslı
bileşikler kullanıldı. Kompozitlerin üretilmesi için çift vida ekstruder
kullanıldı.Üretilen kompozitlerin mekanik termal ve yangın özellikleri
araştırıldı.

Sonuçlar: Bu amaçla farklı
bor esaslı maddeler, sinerjik etkili bileşikler ve maleik anhidrit muamele
edilmiş polietilen (MAPE) ile üretilen kompozitlerin yangın, termal ve mekanik
özelliklerine olan etkisi incelendi. Elde edilen sonuçlara göre yangın
geciktiricilerin ve MAPE’nin birlikte kullanıldığı kompozitlerin eğilme ve
çekme dirençlerinin yanı sıra kompozitlerin elastikiyet modülleri belirgin
şekilde arttığı anlaşılmıştır. Bor esaslı yanma geciktiriciler ve diğer
sinerjik etkili bileşikler, kompozitlerin yatay yanma hızını düşürdüğü ve
oksijen endeksi (LOI) özelliklerini geliştirdiği anlaşılmıştır.











Araştırma
vurguları:
Çinko
boratın MDF atıkları ile hazırlanmış odun plastik kompozitlerde kullanılması,
mekanik ve yangın geciktirici özellikleri açısından en iyi sonuçları verdiği
anlaşılmıştır.

References

  • 1. ASTM D618 (2013). “Standard practice for conditioning plastics for testing,” ASTM International, West Conshohocken, USA.
  • 2. ASTM D256 (2007). “Standard test method for determining the Izod pendulum impact resistance of plastics,” ASTM International, West Conshohocken, USA.
  • 3. ASTM D638. (2007). “Standard test method for tensile properties of plastics,” ASTM International, West Conshohocken, USA.
  • 4. ASTM D790 (2007). “Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials,” ASTM International, West Conshohocken, USA.
  • 5. ASTM D2240 (2010). “Standard test method for rubber property – Durometer hardness,” ASTM International, West Conshohocken, USA.
  • 6. ASTM D2863-10 (2000). “Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index),” ASTM International, West Conshohocken, USA.
  • 7. ASTM D635 (2014). “Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position,” ASTM International, West Conshohocken, USA.
  • 8. Ayrilmis, N. 2013. Combined effects of boron and compatibilizer on dimensional stability and mechanical properties of wood/HDPE composites. Composites Part B-Engineering, 44(1): 745-749.
  • 9. Ayrilmis, N., Akbulut, T., Dundar, T., White, R. H., Mengeloglu, F., Buyuksari, U., Candan, Z., and Avci, E. 2012. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Construction and Building Materials, 33: 63-69.
  • 10. Ayrilmis, N., Benthien, J. T., Thoemen, H., and White, R. H. 2011. Properties of Flat-Pressed Wood Plastic Composites Containing Fire Retardants. Journal of Applied Polymer Science, 122(5): 3201-3210.
  • 11. Cavdar, A. D., Kalaycioglu, H., and Mengeloglu, F. 2016. Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. Journal of Composite Materials, 50(12): 1627-1634.
  • 12. Cavdar, A. D., Mengeloglu, F., and Karakus, K. 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60: 6-12.
  • 13. Cavdar, A. D., Mengeloglu, F., Karakus, K., and Tomak, E. D. 2014. Effect of Chemical Modification with Maleic, Propionic, and Succinic Anhydrides on Some Properties of Wood Flour Filled HDPE Composites. Bioresources, 9(4): 6490-6503.
  • 14. Chai, Y. B., Liu, J. L., and Xing, Z. 2012. Dimensional Stability, Mechanical Properties and Fire Resistance of MUF-Boron Treated Wood. Material and Manufacturing Technology Ii, Pts 1 and 2, 341-342: 80-84.
  • 15. Chiang, W. Y., and Hu, H. C. H. 2001. Phosphate-containing flame-retardant polymers with good compatibility to polypropylene. II. Effect of the flame-retardant polymers on polypropylene. Journal of Applied Polymer Science, 82(10): 2399-2403.
  • 16. Chiu, S. H., and Wang, W. K. 1998. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer, 39(10): 1951-1955.
  • 17. Hamid, M. R. Y., and Ahmad, S. 2011. Effect of Flame Retardants on Wood Plastic Composites-HDPE Based. Composite Science and Technology, Pts 1 and 2, 471-472: 640-645.
  • 18. Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Cuesta, J. M., and Espiell, F. 2007. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polymer Degradation and Stability, 92(6): 1082-1087.
  • 19. Karade, S. R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24(8): 1323-1330. 20. Klyosov, A. A. 2007. Wood-plastic composites: John Wiley and Sons.
  • 21. Kurt, R., and Mengeloglu, F. 2011. Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites. Turkish Journal of Agriculture and Forestry, 35(2): 155-163.
  • 22. Kurt, R., Mengeloglu, F., and Meric, H. 2012. The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites. European Journal of Wood and Wood Products, 70(1-3): 177-182.
  • 23. Leu, S. Y., Yang, T. H., Lo, S. F., and Yang, T. H. 2012. Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites (WPCs). Construction and Building Materials, 29: 120-127.
  • 24. Levan, S. L. 1984. Chemistry of Fire Retardancy. Advances in Chemistry Series(207): 531-574.
  • 25. Matuana, L. M., Balatinecz, J. J., Sodhi, R. N. S., and Park, C. B. 2001. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology, 35(3): 191-201.
  • 26. Mengeloglu, F., and Kabakci, A. 2008. Determination of thermal properties and morphology of eucalyptus wood residue filled high density polyethylene composites. International Journal of Molecular Sciences, 9(2): 107-119.
  • 27. Nikolaeva, M., and Karki, T. 2016. Influence of fire retardants on the reaction-to-fire properties of coextruded wood-polypropylene composites. Fire and Materials, 40(4): 535-543.
  • 28. Sain, M., Park, S. H., Suhara, F., and Law, S. 2004. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2): 363-367.
  • 29. Shen, K. K., Kochesfahani, S., and Jouffret, F. 2008. Zinc borates as multifunctional polymer additives. Polymers for Advanced Technologies, 19(6): 469-474.
  • 30. Stark, N. M., White, R. H., Mueller, S. A., and Osswald, T. A. 2010. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polymer Degradation and Stability, 95(9): 1903-1910.
  • 31. Suppakarn, N., and Jarukumjorn, K. 2009. Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Composites Part B-Engineering, 40(7): 613-618.
  • 32. Wu, G. F., and Xu, M. 2014. Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites. Bioresources, 9(3): 4173-4193.
  • 33. Wu, Z. P., Hu, Y. C., and Shu, W. Y. 2010. Effect of Ultrafine Zinc Borate on the Smoke Suppression and Toxicity Reduction of a Low-Density Polyethylene/Intumescent Flame-Retardant System. Journal of Applied Polymer Science, 117(1): 443-449.
There are 32 citations in total.

Details

Journal Section Articles
Authors

Ertuğrul Altuntaş

Eyyüp Karaoğul

Mehmet Hakkı Alma

Publication Date September 28, 2017
Published in Issue Year 2017

Cite

APA Altuntaş, E., Karaoğul, E., & Alma, M. H. (2017). Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Kastamonu University Journal of Forestry Faculty, 17(2), 334-342. https://doi.org/10.17475/kastorman.329427
AMA Altuntaş E, Karaoğul E, Alma MH. Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Kastamonu University Journal of Forestry Faculty. September 2017;17(2):334-342. doi:10.17475/kastorman.329427
Chicago Altuntaş, Ertuğrul, Eyyüp Karaoğul, and Mehmet Hakkı Alma. “Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers”. Kastamonu University Journal of Forestry Faculty 17, no. 2 (September 2017): 334-42. https://doi.org/10.17475/kastorman.329427.
EndNote Altuntaş E, Karaoğul E, Alma MH (September 1, 2017) Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Kastamonu University Journal of Forestry Faculty 17 2 334–342.
IEEE E. Altuntaş, E. Karaoğul, and M. H. Alma, “Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers”, Kastamonu University Journal of Forestry Faculty, vol. 17, no. 2, pp. 334–342, 2017, doi: 10.17475/kastorman.329427.
ISNAD Altuntaş, Ertuğrul et al. “Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers”. Kastamonu University Journal of Forestry Faculty 17/2 (September 2017), 334-342. https://doi.org/10.17475/kastorman.329427.
JAMA Altuntaş E, Karaoğul E, Alma MH. Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Kastamonu University Journal of Forestry Faculty. 2017;17:334–342.
MLA Altuntaş, Ertuğrul et al. “Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers”. Kastamonu University Journal of Forestry Faculty, vol. 17, no. 2, 2017, pp. 334-42, doi:10.17475/kastorman.329427.
Vancouver Altuntaş E, Karaoğul E, Alma MH. Effects of Fire Retardants on the Fire, Thermal and Mechanical Properties of Wood Plastic Composites Using Recycled Fibers. Kastamonu University Journal of Forestry Faculty. 2017;17(2):334-42.

14178  14179       14165           14166           14167            14168