Research Article
BibTex RIS Cite

Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin

Year 2019, , 290 - 298, 23.12.2019
https://doi.org/10.17475/kastorman.662495

Abstract

Aim of study: Main objective of this research was to predict some of the processes (soil loss, runoff and sediment yield) related to soil erosion with the help of WEPP (Water Erosion Prediction Project) model.
Area of study: The WEPP model was applied to the Düz Creek Watershed (1059 ha in size). It is a sub-watershed flowing into the greater Çoruh River Basin near the district of Borçka, Artvin.
Material and methods: As required by the WEPP model, four large-data files of soil, climate, slope and plant cover/management were created for the watershed using the data gathered from in-field samplings (soil), laboratory analyses and GIS (Geographical Information Systems) assessments. For easier run and detailed investigation of soil erosion process of the research area, the studied watershed was divided into eight small hydrological units (SHUs) and the program was run on these SHUs.
Main results: At the end of GeoWEPP’s run, the results revealed that a total of about 735 mm annual precipitation was fell within the study area. The model also predicted that there was approximately 207 mm as runoff out of this amount of precipitation, which, in turn, generated an annual total soil loss and sediment amounts as 2815.2 t and 2720.9 t, respectively. In addition, the sediment yield per unit area was estimated to be around 2.57 ton/ha/yr while the sediment delivery ratio (SDR) was found to be as 0.977. Lastly, the model predicted that the particle distribution of eroded sediment were 20%, 25% and 55% of clay, silt and sand, respectively, while the mean organic matter (OM) amount of the lost sediment was about 5% for the studied watershed.
Highlights: Soil loss and sediment yield can be calculated for large areas in a short time and with little cost.

References

  • Anonymous (2014). Orman ve Su İşleri Bakanlığı, OGM, Çoruh Nehri Havzası Rehabilitasyon Projesi, Erozyon ve CBS İzleme 3. Ara Raporu (1 Kasım 2013-30 Nisan 2014). [Ministry of Forestry and Water Affairs, OGM, Coruh River Watershed Rehabilitation Project, Erosion and CBS Monitoring 3rd Interim Report (November 1, 2013 - April 30, 2014).]
  • Anonymous (2015). DSİ Genel Müdürlüğü, Etüt, Planlama ve Tahsisler Dairesi Başkanlığı, Su ve Toprak Laboratuvarı Şube Müdürlüğü, Sediment Gözlem İstasyonu Verileri.
  • Anonymous. (2018). Dinamik Erozyon Modeli ve İzleme Sistemi, Türkiye Su Erozyonu İstatistikleri, Teknik Özet. ÇEM Genel Müdürlüğü Yayınları, Ankara.
  • Ascough II, J. C., Nearing, M. A., Baffaut, C. & Liu, B. Y. (1997). The WEPP Watershed Model: I. Hydrology and Erosion. Transactions American Society of Agricultural Engineers, 40(4), 921-933.
  • Aydın, M. (2007). Gümüşhane-Torul Barajı Yağış Havzasından Taşınan Toprak Miktarının Wepp Ortamında Belirlenmesi ve Çözümleri Üzerine Araştırmalar. (Doktora Tezi). [Studies on the Determination and Solutions of the Amount of Soil Carried from Gümüşhane-Torul Dam Watershed. (Ph.D.)] Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Baffaut, C., Nearing, M. A., Ascough II, J. C. & Liu, B. (1997). The WEPP Watershed Model: II. Sensitivity Analysis and Discretization on Small Watersheds, Transactions American Society of Agricultural Engineers, 40(4), 935-943.
  • Başyiğit, L. & Dinç, U. (2003). Eğirdir Gölü Su Toplama Havzasında Oluşan Toprak Kayıplarını Tahmin Etmeye Yönelik Bir Çalışma. [A Study on Predicting the Soil Losses in Eğirdir Lake Catchment Watershed.] Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 18(2), 51-60.
  • El-Hassanin, A. S., Labib, T. M. & Gaber, E. I. (1993). Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burundi. Agriculture, Ecosystems & Environment, 43(3-4), 301-308.
  • El Kateb, H., Zhang, H., Zhang, P. & Mosandl, R. (2013). Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA, 105(0), 1-10.
  • Erdoğan Yüksel, E., Özalp, M. & Yıldırımer, S. (2016). Usıng A Geospatıal Interface (GeoWEPP) To Predict Soil Loss, Runoff And Sediment Yield Of Kokolet Creek Watershed, International Journal of Ecosystems and Ecology Sciences, 6(3), 437-442.
  • Eroğlu, H., Çakır, G., Sivrikaya, F. & Akay, A. E. (2010). Using high resolution images and elevation data in classifying erosion risks of bare soil areas in the Hatila Valley Natural Protected Area, Turkey. Stochastic Environmental Research and Risk Assessment, 24, 699-704.
  • Erskine, W. D., Mahmoudzadeh, A., Browning, C. M. & Myers, C. (2003). Sediment yields and soil loss rates from different land uses on Triassic shales in western Sydney, NSW. Australian Journal of Soil Research, 41(1), 127-140
  • Erskine, W. D., Mahmoudzadeh, A. & Myers, C. (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. CATENA, 49(4), 271-287.
  • Flanagan, D. C. & Livingston, S. J. (1995). WEPP User Summary (USDA-Water Erosion Prediction Project): National Soil Erosion Research Laboratory, Report No:11.
  • Flanagan, D. C. & Nearing, M. A. (1995). USDA-Water Erosion Prediction project: Hillslope profile and watershed model documentation. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette.
  • Flanagan, D. C. & Frankenberger, J. (2001). Format of Cligen weather station statistics input files, for Cligen versions 4.1 - 5.1 as of 6/2001 (D.C. Flanagan), updated 12/11/2008 - Jim Frankenberger.
  • Foster, G. R. & Lane, L. J. (1987). User requirements UDSA-Water Erosion Prediction Project (WEPP), NSERL Report no. 1USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN 47097-1196.
  • Garbrecht, J. & Martz, L. W. (1999). TOPAZ: An Automated Digital Landscape Analysis Tool for Topographic Evaluation, Drainage Identification, Watershed Segmentation and Subcatchment Parameterization; TOPAZ Overview. USDA-ARS Publication No. GRL 9-I.
  • Hacısalihoğlu, S., Kalay, H. Z. & Oktan, E. (2008). Toprak Aşınımı (Erozyon) Benzetim (Simülasyon) Modelleri. [Soil Erosion and Simulation Models.] Orman Mühendisleri Odası Dergisi, 45(10-11-12), 40-45.
  • Karabulut, M. & Küçükönder, M. (2008). Kahramanmaraş Ovası ve çevresinde CBS kullanılarak Erozyon Alanlarının Tespiti. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 11(2), 14-22.
  • Lal, R. (1994). Soil erosion research method, 2nd edn. Soil and Water Conservation Society, Ankeny, IA, USA., 352.
  • Nearing, M. A., Foster, G. R., Lane, L. J. & Finkner, S. C. (1989). A process based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions American Society of Agricultural Engineers, 32(5), 1587-1593.
  • Özalp, M., Erdoğan Yüksel, E. & Yıldırımer, S. (2017). Subdividing Large Mountainous Watersheds into Smaller Hydrological Units to Predict Soil Loss and Sediment Yield Using the GeoWEPP Model, Polish Journal of Environmental Studies, 26 (5), 2135-2146.
  • Robinson, A. R. (1977). Relation between soil erosion and sediment delivery, Proceedings of the Paris Symposium On Erosion And Solid Matter Transport In Inland Waters, Dorking Surrey. UK., 122, 159-167.
  • Tüfekçioğlu, A., Güner, S., Duman, A. & Küçük, M. (2008). Murgul-Akasya Ağaçlandırmalarının Yüzeysel Akış ve Sediment Taşınmasını Önlemedeki Etkileri ve Bunun Su Yönetimi-Kuraklık Ilişkileri Bakımından İrdelenmesi. [Effects of Murgul-Akasya Afforestation in Preventing Surface Runoff and Sediment Transport and Investigating it in terms of Water Management - Drought Relations]. Kuraklık ve Su Yönetimi Bildiriler Kitabı , 15-16 Mayıs, Ankara,, 254-259.
  • TÜİK, (2015). Adrese Dayalı Nüfus Kayıt Sistemi (ADNKS) Veri Tabanı, Şehir, Belde ve Köy Nüfusları.
  • USDA-ARS (2003). Using Climate Data in the WEPP Windows Interface, USDA-ARS National Soil Erosion Laboratory September 25, 2003 (Updated May 19, 2006).
  • Wischmeier, W. H. & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation, (Vol. 282). US Department Agricultural Handbook.
  • Yüksel, A. (2001). K.Maraş Ayvalı Barajı Yağış Havzasının CBS (Coğrafi Bilgi Sistemi) Ortamında Havza Amenajmanı Bakımından Planlanması Üzerine Araştırmalar.
  • (Doktora Tezi). [Studies on Planning K.Maraş Ayvalı Dam Watershed in terms of Watershed Management in GIS (Geographic Information System) Environment. (Ph.D.)]. K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
  • Yüksel, A., Akay, A. E., Gündoğan, R., Reis, M. & Çetiner, M. (2008). Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey. Sensors, 8, 1222-1236.
  • Yüksel, A., Gündoğan, R. & Akay, A. E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya dam watershed in Kahramanmaras, Turkey. Sensors, 8, 4851-4865.
  • Zhongming, W., Lees, B. G., Feng, J., Wanning, L. & Haijing, S. (2010). Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. CATENA, 83(1), 87-93.

Artvin Düz Dere Havzası’nda Toprak Erozyonu Durumunun Tahmini

Year 2019, , 290 - 298, 23.12.2019
https://doi.org/10.17475/kastorman.662495

Abstract

Çalışmanın amacı: Havzada oluşan toprak kaybı ve sediment veriminin WEPP modeli ve CBS (Coğrafi Bilgi Sistemleri) tekniklerinin entegre edildiği GeoWEPP arayüzü kullanılarak kısa sürede ve az masrafla hesaplanması amaçlanmıştır.
Çalışma alanı: Çoruh nehrine birleşen Düz Dere Havzası araştırma alanı olarak seçilmiştir.
Materyal ve yöntem: GeoWEPP ara yüzü için gerekli olan iklim, eğim ve bitki amenajmanı dosyalarına ek olarak toprak dosyası oluşturulmuştur. Araştırma havzası sekiz alt havzaya bölünmüş ve program bu alt havzalarda yürütülerek toprak kaybı, yüzeysel akış ve sediment veriminin ortalama değerleri hesaplanmıştır.
Sonuçlar: Çalışma sonucunda, havzaya 735 mm’lik yağış düştüğü ve bunun yaklaşık olarak 207 mm’sinin yüzeysel akışa geçtiği tahmin edilmiştir.1059 ha’lık bir alana sahip olan havzada yıllık toplam toprak kaybı ve sediment miktarı sırası ile 2815.2 ve 2720.9 ton olarak bulunmuştur. Bununla beraber, birim alandan ise 2.57 ton/ha/yıl sediment verimi gerçekleştiği hesaplanmıştır. Ortalama sediment iletim oranı yaklaşık 0.977 olarak bulunmuştur. Ek olarak, taşınan sediment içerisindeki ortalama kil oranının % 20, toz oranının % 25, kum oranının % 55, organik madde miktarının ise % 5 olduğu tahmin edilmiştir.
Önemli vurgular: Toprak kaybı ve sediment verimi, büyük alanlar için kısa sürede ve daha az maliyetle hesaplanabilir.

References

  • Anonymous (2014). Orman ve Su İşleri Bakanlığı, OGM, Çoruh Nehri Havzası Rehabilitasyon Projesi, Erozyon ve CBS İzleme 3. Ara Raporu (1 Kasım 2013-30 Nisan 2014). [Ministry of Forestry and Water Affairs, OGM, Coruh River Watershed Rehabilitation Project, Erosion and CBS Monitoring 3rd Interim Report (November 1, 2013 - April 30, 2014).]
  • Anonymous (2015). DSİ Genel Müdürlüğü, Etüt, Planlama ve Tahsisler Dairesi Başkanlığı, Su ve Toprak Laboratuvarı Şube Müdürlüğü, Sediment Gözlem İstasyonu Verileri.
  • Anonymous. (2018). Dinamik Erozyon Modeli ve İzleme Sistemi, Türkiye Su Erozyonu İstatistikleri, Teknik Özet. ÇEM Genel Müdürlüğü Yayınları, Ankara.
  • Ascough II, J. C., Nearing, M. A., Baffaut, C. & Liu, B. Y. (1997). The WEPP Watershed Model: I. Hydrology and Erosion. Transactions American Society of Agricultural Engineers, 40(4), 921-933.
  • Aydın, M. (2007). Gümüşhane-Torul Barajı Yağış Havzasından Taşınan Toprak Miktarının Wepp Ortamında Belirlenmesi ve Çözümleri Üzerine Araştırmalar. (Doktora Tezi). [Studies on the Determination and Solutions of the Amount of Soil Carried from Gümüşhane-Torul Dam Watershed. (Ph.D.)] Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Baffaut, C., Nearing, M. A., Ascough II, J. C. & Liu, B. (1997). The WEPP Watershed Model: II. Sensitivity Analysis and Discretization on Small Watersheds, Transactions American Society of Agricultural Engineers, 40(4), 935-943.
  • Başyiğit, L. & Dinç, U. (2003). Eğirdir Gölü Su Toplama Havzasında Oluşan Toprak Kayıplarını Tahmin Etmeye Yönelik Bir Çalışma. [A Study on Predicting the Soil Losses in Eğirdir Lake Catchment Watershed.] Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 18(2), 51-60.
  • El-Hassanin, A. S., Labib, T. M. & Gaber, E. I. (1993). Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burundi. Agriculture, Ecosystems & Environment, 43(3-4), 301-308.
  • El Kateb, H., Zhang, H., Zhang, P. & Mosandl, R. (2013). Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA, 105(0), 1-10.
  • Erdoğan Yüksel, E., Özalp, M. & Yıldırımer, S. (2016). Usıng A Geospatıal Interface (GeoWEPP) To Predict Soil Loss, Runoff And Sediment Yield Of Kokolet Creek Watershed, International Journal of Ecosystems and Ecology Sciences, 6(3), 437-442.
  • Eroğlu, H., Çakır, G., Sivrikaya, F. & Akay, A. E. (2010). Using high resolution images and elevation data in classifying erosion risks of bare soil areas in the Hatila Valley Natural Protected Area, Turkey. Stochastic Environmental Research and Risk Assessment, 24, 699-704.
  • Erskine, W. D., Mahmoudzadeh, A., Browning, C. M. & Myers, C. (2003). Sediment yields and soil loss rates from different land uses on Triassic shales in western Sydney, NSW. Australian Journal of Soil Research, 41(1), 127-140
  • Erskine, W. D., Mahmoudzadeh, A. & Myers, C. (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. CATENA, 49(4), 271-287.
  • Flanagan, D. C. & Livingston, S. J. (1995). WEPP User Summary (USDA-Water Erosion Prediction Project): National Soil Erosion Research Laboratory, Report No:11.
  • Flanagan, D. C. & Nearing, M. A. (1995). USDA-Water Erosion Prediction project: Hillslope profile and watershed model documentation. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette.
  • Flanagan, D. C. & Frankenberger, J. (2001). Format of Cligen weather station statistics input files, for Cligen versions 4.1 - 5.1 as of 6/2001 (D.C. Flanagan), updated 12/11/2008 - Jim Frankenberger.
  • Foster, G. R. & Lane, L. J. (1987). User requirements UDSA-Water Erosion Prediction Project (WEPP), NSERL Report no. 1USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN 47097-1196.
  • Garbrecht, J. & Martz, L. W. (1999). TOPAZ: An Automated Digital Landscape Analysis Tool for Topographic Evaluation, Drainage Identification, Watershed Segmentation and Subcatchment Parameterization; TOPAZ Overview. USDA-ARS Publication No. GRL 9-I.
  • Hacısalihoğlu, S., Kalay, H. Z. & Oktan, E. (2008). Toprak Aşınımı (Erozyon) Benzetim (Simülasyon) Modelleri. [Soil Erosion and Simulation Models.] Orman Mühendisleri Odası Dergisi, 45(10-11-12), 40-45.
  • Karabulut, M. & Küçükönder, M. (2008). Kahramanmaraş Ovası ve çevresinde CBS kullanılarak Erozyon Alanlarının Tespiti. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 11(2), 14-22.
  • Lal, R. (1994). Soil erosion research method, 2nd edn. Soil and Water Conservation Society, Ankeny, IA, USA., 352.
  • Nearing, M. A., Foster, G. R., Lane, L. J. & Finkner, S. C. (1989). A process based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions American Society of Agricultural Engineers, 32(5), 1587-1593.
  • Özalp, M., Erdoğan Yüksel, E. & Yıldırımer, S. (2017). Subdividing Large Mountainous Watersheds into Smaller Hydrological Units to Predict Soil Loss and Sediment Yield Using the GeoWEPP Model, Polish Journal of Environmental Studies, 26 (5), 2135-2146.
  • Robinson, A. R. (1977). Relation between soil erosion and sediment delivery, Proceedings of the Paris Symposium On Erosion And Solid Matter Transport In Inland Waters, Dorking Surrey. UK., 122, 159-167.
  • Tüfekçioğlu, A., Güner, S., Duman, A. & Küçük, M. (2008). Murgul-Akasya Ağaçlandırmalarının Yüzeysel Akış ve Sediment Taşınmasını Önlemedeki Etkileri ve Bunun Su Yönetimi-Kuraklık Ilişkileri Bakımından İrdelenmesi. [Effects of Murgul-Akasya Afforestation in Preventing Surface Runoff and Sediment Transport and Investigating it in terms of Water Management - Drought Relations]. Kuraklık ve Su Yönetimi Bildiriler Kitabı , 15-16 Mayıs, Ankara,, 254-259.
  • TÜİK, (2015). Adrese Dayalı Nüfus Kayıt Sistemi (ADNKS) Veri Tabanı, Şehir, Belde ve Köy Nüfusları.
  • USDA-ARS (2003). Using Climate Data in the WEPP Windows Interface, USDA-ARS National Soil Erosion Laboratory September 25, 2003 (Updated May 19, 2006).
  • Wischmeier, W. H. & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation, (Vol. 282). US Department Agricultural Handbook.
  • Yüksel, A. (2001). K.Maraş Ayvalı Barajı Yağış Havzasının CBS (Coğrafi Bilgi Sistemi) Ortamında Havza Amenajmanı Bakımından Planlanması Üzerine Araştırmalar.
  • (Doktora Tezi). [Studies on Planning K.Maraş Ayvalı Dam Watershed in terms of Watershed Management in GIS (Geographic Information System) Environment. (Ph.D.)]. K.T.Ü. Fen Bilimleri Enstitüsü, Trabzon.
  • Yüksel, A., Akay, A. E., Gündoğan, R., Reis, M. & Çetiner, M. (2008). Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey. Sensors, 8, 1222-1236.
  • Yüksel, A., Gündoğan, R. & Akay, A. E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya dam watershed in Kahramanmaras, Turkey. Sensors, 8, 4851-4865.
  • Zhongming, W., Lees, B. G., Feng, J., Wanning, L. & Haijing, S. (2010). Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. CATENA, 83(1), 87-93.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Esin Erdoğan Yüksel 0000-0002-5660-9881

Mehmet Özalp This is me 0000-0002-6278-5443

Saim Yıldırımer This is me 0000-0003-3240-0968

Publication Date December 23, 2019
Published in Issue Year 2019

Cite

APA Erdoğan Yüksel, E., Özalp, M., & Yıldırımer, S. (2019). Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty, 19(3), 290-298. https://doi.org/10.17475/kastorman.662495
AMA Erdoğan Yüksel E, Özalp M, Yıldırımer S. Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty. December 2019;19(3):290-298. doi:10.17475/kastorman.662495
Chicago Erdoğan Yüksel, Esin, Mehmet Özalp, and Saim Yıldırımer. “Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin”. Kastamonu University Journal of Forestry Faculty 19, no. 3 (December 2019): 290-98. https://doi.org/10.17475/kastorman.662495.
EndNote Erdoğan Yüksel E, Özalp M, Yıldırımer S (December 1, 2019) Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty 19 3 290–298.
IEEE E. Erdoğan Yüksel, M. Özalp, and S. Yıldırımer, “Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin”, Kastamonu University Journal of Forestry Faculty, vol. 19, no. 3, pp. 290–298, 2019, doi: 10.17475/kastorman.662495.
ISNAD Erdoğan Yüksel, Esin et al. “Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin”. Kastamonu University Journal of Forestry Faculty 19/3 (December 2019), 290-298. https://doi.org/10.17475/kastorman.662495.
JAMA Erdoğan Yüksel E, Özalp M, Yıldırımer S. Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty. 2019;19:290–298.
MLA Erdoğan Yüksel, Esin et al. “Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin”. Kastamonu University Journal of Forestry Faculty, vol. 19, no. 3, 2019, pp. 290-8, doi:10.17475/kastorman.662495.
Vancouver Erdoğan Yüksel E, Özalp M, Yıldırımer S. Predicting Soil Erosion Status of the Düz Creek Watershed in Artvin. Kastamonu University Journal of Forestry Faculty. 2019;19(3):290-8.

14178  14179       14165           14166           14167            14168