Research Article
BibTex RIS Cite

Fas’ın Idmine Ormanı’ndaki Bozulmuş Orman Alanlarının Yerbilim Yeteneklerini Kullanarak Mekansal Analizi

Year 2021, , 1 - 11, 03.04.2021
https://doi.org/10.17475/kastorman.908568

Abstract

Çalışmanın Amacı: Çalışmanın amacı, 2019 yılının (28/08/2019 tarihli) Sentinel 2 uydu görüntülerini kullanarak CBS ve Uzaktan Algılama yoluyla orman bozulma durumu için bir tanı sunmaktır.
Çalışma Alanı: Çalışma, yarı kurak biyoklimatik bölgede bulunan Güney Batı Fas'taki Idmine orman komününde gerçekleştirilmiştir.
Materyal ve Yöntem: Bu çalışmada, iki yöntem denenmiştir. Bunlar; (i) Vejetasyon indisleri (VIs) [Normalize Fark Vejetasyon İndeksi (NDVI), Normalize Fark Su İndeksi (NDWI), Toprak-uyarlı Vejetasyon İndeksi (SAVI), Parlaklık İndeksi (IB)] ve bunların kombinasyonu ile (ii) Denetimli sınıflandırma ve spektral analizdir.
Temel sonuçlar: Orman degradasyon durumunu tanımlamak için iki yöntem aynı sonuçları (Kappa katsayısı=%90) vermiştir. Sonuç olarak, çalışma alanı içindeki orman degredasyonuna ilişkin üç sınıf; düşük (%34), orta (%44) ve kritik bozulma (%22)’dır.
Araştırma Vurguları: Bu izleme, yöneticilerin orman yönetim planları oluşturmasına ve ormansızlaşma ve orman degredasyonu hızını değerlendirmesine yardımcı olabilir.

References

  • Adedeji, O.H. & Adeofun, C.O. (2014). Spatial pattern of land cover change using Remotely Sensed Imagery and GIS: A Case study of Omo-Shasha-Oluwa Forest Reserve, SW Nigeria (1986-2002). Journal of Geographic Information System, 6(04), 375-385. https://doi.org/10.4236/jgis.2014.64033.
  • Afify, H.A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: A case study in New Burg El-Arab Area. Alexandria Engineering Journal, 50(2), 187-195. https://doi.org/10.1016/j.aej.2011.06.001.
  • Alaoui, A., Laaribya, S. & Ayan, S. (2020). The evolution of the forest cover with the effect of anthropic pressure (The Case Study of Sehoul Cork-Oak Forest in Morocco, North Atlantic). Kastamonu University Journal of Forestry Faculty, 20(1), 62-73.
  • Bannari, A., Huete, A.R., Morin, D. & Zagolski, F. (1996). Effets de la couleur et de la brillance des sols sur les indices de végétation. International Journal of Remote Sensing, 17(10), 1885-1906.
  • Baumann, M., Ozdogan, M., Wolter, P.T., Krylov, A., Vladimirova, N. & Radeloff, V.C. (2014). Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 143, 171-179. https://doi.org/10.1016/j.rse.2013.12.020.
  • Cuenca, P., Arriagada, R. & Echeverría, C. (2016). How much deforestation do protected areas avoid in Tropical Andean Landscapes? Environmental Science & Policy, 56, 56-66. https://doi.org/10.1016/j.envsci.2015.10.014.
  • Gao, B. (1996). NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266, Dec.
  • Ghebrezgabher, M. G., Yang, T., Yang, X., Wang, X. & Khan, M. (2016). Extracting and analysing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 37-47. https://doi.org/10.1016/j.ejrs.2015.09.002.
  • Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C.O. & Altstatt, A. (2008). A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112 (5), 2495-2513. https://doi.org/10.1016/j.rse.2007.11.012
  • Haque, M. I. & Basak, R. (2017). Land cover change detection using GIS and Remote Sensing Techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251-263. https://doi.org/10.1016/j.ejrs.2016.12.003
  • Healey, S. P., Cohen, W. B., Zhiqiang, Y. & Krankina, O. N. (2005). Comparison of Tasseled Cap-Based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97(3), 301-310. https://doi.org/10.1016/j.rse.2005.05.009.
  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G, (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309. https://doi.org/10.1016/0034-4257(88)90106-X IFN, (1994). Inventaire forestier National – Département des eaux et forêts Maroc.
  • Khalile, L., Kaoukaya, H., Lahlaoi, H. & Rhinane, H. (2015). Monitoring deforestation and forest degradation in Benslimane Forest (Morocco) using Landsat time series, November 2015, Conference: 4th International Geosciences & Geomatics Conference, 23rd- 25th November 2015, Manama, Bahrain.
  • Kinoshita, T., Inoue, K., Iwao, K., Kagemoto, H. & Yamagata, Y. (2009). A spatial evaluation of forest biomass usage using GIS. Applied Energy, 86(1), 1-8. https://doi.org/10.1016/j.apenergy.2008.03.017
  • Kumar, P., Rani, M., Pandey, P.C., Majumdar, A. & Nathawat, M.S. (2010). Monitoring of deforestation and forest degradation using Remote Sensing and GIS: A case study of Ranchi in Jharkhand (India). Report and Opinion, 2 (4), 14-20.
  • Laaribya, S. & Alaoui, A. (2017). Rural women and the forest issues preservation - Case study, Morocco. Biological Diversity and Conservation, 10/2 (S2), 8-15.
  • Laaribya, S., Alaoui, A. & Gmira, N. (2017). The Moroccan forest and sustainable development case of the argan tree (Argania spinosa (L.) Skeels) in Morocco, Biological Diversity and Conservation. 10/2 (S2), 1-7.
  • Laaribya, S., Najib, G. & Assmaa, A. (2010). Towards a coordinated development of the forest in Maamora (Morocco), Kastamonu Univ., Journal of Forestry Faculty, 10(2), 172-179.
  • Lea, R., Blodgett, C., Diamond, D. & Schanta, M. (2004). Using the tasselled cap transformation to identify change in the Missouri Ozark Forests. Proceedings of the ASPRS Fall Conference Images to Decisions: Remote Sensing Foundations for GIS Applications, 1-12.
  • Lyon, J. G., Yuan, D., Lunetta, R.S. & Elvidge, C.D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143-150.
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson, L.O., Arai, E., del Bon Espirito-Santo, F., Freitas, R. & Morisette, J.T. (2006). Cropland expansion changes deforestation dynamics in the Southern Brazilian Amazon. Proceedings of the National Academy of Sciences, 103(39), 14637-14641. https://doi.org/10.1073/pnas.0606377103
  • Nori, W., Elsidding, E.N. & Niemeyer, I. (2008). Detection of land cover changes using Multi-Temporal Satellite Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(7), 947-951.
  • Ochego, H. (2003). Application of remote sensing in deforestation monitoring: A case study of the Aberdares (Kenya). 2nd FIG Regional Conference, Marrakech, Morocco, 2-5 December 2003, 1-10.
  • Onojeghuo, A.O, & Onojeghuo, A.R. (2015). Dynamics of forest landscape transition across protected areas in the Niger Delta from 1986 to 2014. Journal of Geoscience and Environment Protection, 3(7), 1.
  • Romero-Sanchez, M.E. & Ponce-Hernandez, R. (2017). Assessing and monitoring forest degradation in a deciduous tropical forest in Mexico via remote sensing indicators. Forests, 8(9), 302. https://doi.org/10.3390/f8090302.
  • Sahebjalal, E. & Dashtekian, K. (2013). Analysis of land use-land covers changes using Normalized Difference Vegetation Index (NDVI) differencing and classification methods. African Journal of Agricultural Research, 8(37), 4614-4622.
  • Schultz, M., Clevers, J.G., Carter, S., Verbesselt, J., Avitabile, V., Quang, H.V. & Herold, M. (2016). Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318-327. https://doi.org/10.1016/j.jag.2016.06.020
  • Siegmund, A. & Menz, G. (2005). Fernes nah gebracht –Satelliten- und Luftbildeinsatz zur Analyse von Umweltveränderungen im Geographieunterricht. In: Geographie & Schule, 27. Jg., H. 154, 2-10.
  • Song, X.P., Huang, C., Sexton, J.O., Channan, S. & Townshend, J.R. (2014). Annual detection of forest cover loss using time series satellite measurements of percent tree cover. Remote Sensing, 6(9), 8878-8903. https://doi.org/10.3390/rs6098878.
  • Torahi, A.A. & Rai, S.C. (2011). Land cover classification and forest change analysis, using satellite imagery - A case study in Dehdez Area of Zagros Mountain in Iran. Journal of Geographic Information System, 3(1), 1-11. https://doi.org/10.4236/jgis.2011.31001
  • Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8 (2), 127-150.
  • URL 1. FAO (Forest and Agricultural Organization of the United States), Forests and the forestry sector: Morocco, http://www.fao.org/forestry/country/57478/en/mar/, Access Date: 21.04.2020.
  • Villa, P., Lechi, G. & Gomarasca, M.A. (2009). Multivariate differencing techniques for land cover change detection: The normalized difference reflectance approach. In: Geoscience and Remote Sensing, In-Tech., 277-300. https://doi.org/10.5772/8312
  • Wang, T. (2016). Vegetation NDVI change and its relationship with climate change and human activities in Yulin, Shaanxi Province of China. Journal of Geoscience and Environment Protection, 4, 28-40. https://doi.org/10.4236/gep.2016.410002.
  • Xue, J. & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 1-17. https://doi.org/10.1155/2017/1353691.
  • Yang, L., Xian, G., Klaver, J. M. & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering & Remote Sensing, 69(9), 1003-1010. https://doi.org/10.14358/PERS.69.9.1003

Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities

Year 2021, , 1 - 11, 03.04.2021
https://doi.org/10.17475/kastorman.908568

Abstract

Aim of study: The aim of the study is to present a diagnosis for the state of Argan forest degradation in Morocco through GIS and remote sensing utilizing Sentinel 2 satellite images of the year 2019 (dated 28/08/2019).
Area of study: The study was carried out in a forest commune in Idmine, South West Morocco, which is located in semi-arid bioclimatic region.
Material and methods: In the study, two methods were tested. These are; (i) the vegetation indices (VIs) [Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Soil-Adjusted Vegetation Index (SAVI), Brilliance Index (IB)] and their combination and (ii) the supervised classification and spectral analysis.
Main results: Two methods have given the same results (Kappa coefficient=90%) to describe the state of forest degradation. Consequently, three classes pertaining to forest degradation within the study area were; low (34%), medium (44%) and critical degradation (22%).
Highlights: This monitoring might help managers to create forest management plans and to evaluate the speed of deforestation and degradation.

References

  • Adedeji, O.H. & Adeofun, C.O. (2014). Spatial pattern of land cover change using Remotely Sensed Imagery and GIS: A Case study of Omo-Shasha-Oluwa Forest Reserve, SW Nigeria (1986-2002). Journal of Geographic Information System, 6(04), 375-385. https://doi.org/10.4236/jgis.2014.64033.
  • Afify, H.A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: A case study in New Burg El-Arab Area. Alexandria Engineering Journal, 50(2), 187-195. https://doi.org/10.1016/j.aej.2011.06.001.
  • Alaoui, A., Laaribya, S. & Ayan, S. (2020). The evolution of the forest cover with the effect of anthropic pressure (The Case Study of Sehoul Cork-Oak Forest in Morocco, North Atlantic). Kastamonu University Journal of Forestry Faculty, 20(1), 62-73.
  • Bannari, A., Huete, A.R., Morin, D. & Zagolski, F. (1996). Effets de la couleur et de la brillance des sols sur les indices de végétation. International Journal of Remote Sensing, 17(10), 1885-1906.
  • Baumann, M., Ozdogan, M., Wolter, P.T., Krylov, A., Vladimirova, N. & Radeloff, V.C. (2014). Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 143, 171-179. https://doi.org/10.1016/j.rse.2013.12.020.
  • Cuenca, P., Arriagada, R. & Echeverría, C. (2016). How much deforestation do protected areas avoid in Tropical Andean Landscapes? Environmental Science & Policy, 56, 56-66. https://doi.org/10.1016/j.envsci.2015.10.014.
  • Gao, B. (1996). NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266, Dec.
  • Ghebrezgabher, M. G., Yang, T., Yang, X., Wang, X. & Khan, M. (2016). Extracting and analysing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 37-47. https://doi.org/10.1016/j.ejrs.2015.09.002.
  • Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C.O. & Altstatt, A. (2008). A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112 (5), 2495-2513. https://doi.org/10.1016/j.rse.2007.11.012
  • Haque, M. I. & Basak, R. (2017). Land cover change detection using GIS and Remote Sensing Techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251-263. https://doi.org/10.1016/j.ejrs.2016.12.003
  • Healey, S. P., Cohen, W. B., Zhiqiang, Y. & Krankina, O. N. (2005). Comparison of Tasseled Cap-Based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97(3), 301-310. https://doi.org/10.1016/j.rse.2005.05.009.
  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G, (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309. https://doi.org/10.1016/0034-4257(88)90106-X IFN, (1994). Inventaire forestier National – Département des eaux et forêts Maroc.
  • Khalile, L., Kaoukaya, H., Lahlaoi, H. & Rhinane, H. (2015). Monitoring deforestation and forest degradation in Benslimane Forest (Morocco) using Landsat time series, November 2015, Conference: 4th International Geosciences & Geomatics Conference, 23rd- 25th November 2015, Manama, Bahrain.
  • Kinoshita, T., Inoue, K., Iwao, K., Kagemoto, H. & Yamagata, Y. (2009). A spatial evaluation of forest biomass usage using GIS. Applied Energy, 86(1), 1-8. https://doi.org/10.1016/j.apenergy.2008.03.017
  • Kumar, P., Rani, M., Pandey, P.C., Majumdar, A. & Nathawat, M.S. (2010). Monitoring of deforestation and forest degradation using Remote Sensing and GIS: A case study of Ranchi in Jharkhand (India). Report and Opinion, 2 (4), 14-20.
  • Laaribya, S. & Alaoui, A. (2017). Rural women and the forest issues preservation - Case study, Morocco. Biological Diversity and Conservation, 10/2 (S2), 8-15.
  • Laaribya, S., Alaoui, A. & Gmira, N. (2017). The Moroccan forest and sustainable development case of the argan tree (Argania spinosa (L.) Skeels) in Morocco, Biological Diversity and Conservation. 10/2 (S2), 1-7.
  • Laaribya, S., Najib, G. & Assmaa, A. (2010). Towards a coordinated development of the forest in Maamora (Morocco), Kastamonu Univ., Journal of Forestry Faculty, 10(2), 172-179.
  • Lea, R., Blodgett, C., Diamond, D. & Schanta, M. (2004). Using the tasselled cap transformation to identify change in the Missouri Ozark Forests. Proceedings of the ASPRS Fall Conference Images to Decisions: Remote Sensing Foundations for GIS Applications, 1-12.
  • Lyon, J. G., Yuan, D., Lunetta, R.S. & Elvidge, C.D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143-150.
  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
  • Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson, L.O., Arai, E., del Bon Espirito-Santo, F., Freitas, R. & Morisette, J.T. (2006). Cropland expansion changes deforestation dynamics in the Southern Brazilian Amazon. Proceedings of the National Academy of Sciences, 103(39), 14637-14641. https://doi.org/10.1073/pnas.0606377103
  • Nori, W., Elsidding, E.N. & Niemeyer, I. (2008). Detection of land cover changes using Multi-Temporal Satellite Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(7), 947-951.
  • Ochego, H. (2003). Application of remote sensing in deforestation monitoring: A case study of the Aberdares (Kenya). 2nd FIG Regional Conference, Marrakech, Morocco, 2-5 December 2003, 1-10.
  • Onojeghuo, A.O, & Onojeghuo, A.R. (2015). Dynamics of forest landscape transition across protected areas in the Niger Delta from 1986 to 2014. Journal of Geoscience and Environment Protection, 3(7), 1.
  • Romero-Sanchez, M.E. & Ponce-Hernandez, R. (2017). Assessing and monitoring forest degradation in a deciduous tropical forest in Mexico via remote sensing indicators. Forests, 8(9), 302. https://doi.org/10.3390/f8090302.
  • Sahebjalal, E. & Dashtekian, K. (2013). Analysis of land use-land covers changes using Normalized Difference Vegetation Index (NDVI) differencing and classification methods. African Journal of Agricultural Research, 8(37), 4614-4622.
  • Schultz, M., Clevers, J.G., Carter, S., Verbesselt, J., Avitabile, V., Quang, H.V. & Herold, M. (2016). Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318-327. https://doi.org/10.1016/j.jag.2016.06.020
  • Siegmund, A. & Menz, G. (2005). Fernes nah gebracht –Satelliten- und Luftbildeinsatz zur Analyse von Umweltveränderungen im Geographieunterricht. In: Geographie & Schule, 27. Jg., H. 154, 2-10.
  • Song, X.P., Huang, C., Sexton, J.O., Channan, S. & Townshend, J.R. (2014). Annual detection of forest cover loss using time series satellite measurements of percent tree cover. Remote Sensing, 6(9), 8878-8903. https://doi.org/10.3390/rs6098878.
  • Torahi, A.A. & Rai, S.C. (2011). Land cover classification and forest change analysis, using satellite imagery - A case study in Dehdez Area of Zagros Mountain in Iran. Journal of Geographic Information System, 3(1), 1-11. https://doi.org/10.4236/jgis.2011.31001
  • Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8 (2), 127-150.
  • URL 1. FAO (Forest and Agricultural Organization of the United States), Forests and the forestry sector: Morocco, http://www.fao.org/forestry/country/57478/en/mar/, Access Date: 21.04.2020.
  • Villa, P., Lechi, G. & Gomarasca, M.A. (2009). Multivariate differencing techniques for land cover change detection: The normalized difference reflectance approach. In: Geoscience and Remote Sensing, In-Tech., 277-300. https://doi.org/10.5772/8312
  • Wang, T. (2016). Vegetation NDVI change and its relationship with climate change and human activities in Yulin, Shaanxi Province of China. Journal of Geoscience and Environment Protection, 4, 28-40. https://doi.org/10.4236/gep.2016.410002.
  • Xue, J. & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 1-17. https://doi.org/10.1155/2017/1353691.
  • Yang, L., Xian, G., Klaver, J. M. & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering & Remote Sensing, 69(9), 1003-1010. https://doi.org/10.14358/PERS.69.9.1003
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Said Laarıbya This is me 0000-0003-3864-0612

Assmaa Alaouı This is me 0000-0001-7844-2683

Sezgin Ayan This is me 0000-0001-8077-0512

Abdelkader Benabou This is me 0000-0002-3274-6398

Publication Date April 3, 2021
Published in Issue Year 2021

Cite

APA Laarıbya, S., Alaouı, A., Ayan, S., Benabou, A. (2021). Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities. Kastamonu University Journal of Forestry Faculty, 21(1), 1-11. https://doi.org/10.17475/kastorman.908568
AMA Laarıbya S, Alaouı A, Ayan S, Benabou A. Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities. Kastamonu University Journal of Forestry Faculty. April 2021;21(1):1-11. doi:10.17475/kastorman.908568
Chicago Laarıbya, Said, Assmaa Alaouı, Sezgin Ayan, and Abdelkader Benabou. “Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities”. Kastamonu University Journal of Forestry Faculty 21, no. 1 (April 2021): 1-11. https://doi.org/10.17475/kastorman.908568.
EndNote Laarıbya S, Alaouı A, Ayan S, Benabou A (April 1, 2021) Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities. Kastamonu University Journal of Forestry Faculty 21 1 1–11.
IEEE S. Laarıbya, A. Alaouı, S. Ayan, and A. Benabou, “Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities”, Kastamonu University Journal of Forestry Faculty, vol. 21, no. 1, pp. 1–11, 2021, doi: 10.17475/kastorman.908568.
ISNAD Laarıbya, Said et al. “Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities”. Kastamonu University Journal of Forestry Faculty 21/1 (April 2021), 1-11. https://doi.org/10.17475/kastorman.908568.
JAMA Laarıbya S, Alaouı A, Ayan S, Benabou A. Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities. Kastamonu University Journal of Forestry Faculty. 2021;21:1–11.
MLA Laarıbya, Said et al. “Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities”. Kastamonu University Journal of Forestry Faculty, vol. 21, no. 1, 2021, pp. 1-11, doi:10.17475/kastorman.908568.
Vancouver Laarıbya S, Alaouı A, Ayan S, Benabou A. Spatial Analysis of the Degraded Forest Areas in Idmine Forest-Morocco Using Geoscience Capabilities. Kastamonu University Journal of Forestry Faculty. 2021;21(1):1-11.

14178  14179       14165           14166           14167            14168