Research Article
BibTex RIS Cite
Year 2018, Volume: 18 Issue: 3, 236 - 247, 28.12.2018
https://doi.org/10.17475/kastorman.498413

Abstract

Öz



Çalışmanın amacı: Bu çalışmanın amacı ısırgan (Urtica dioica), turp (Raphanus sativus) ve nar (Punica granatum) tohumlarından elde
edilen soğuk sıkım yağların antimikrobiyal etkilerinin ortaya koymaktır.



Materyal ve Yöntem: Bu tohumların yağları, Staphylococcus epidermidis
DSMZ 20044, Staphylococcus aureus
ATCC 25923, Salmonella typhimurium SL
1344, Salmonella kentucky, Salmonella infantis, Salmonella enteritidis, Pseudomonas fluorescens P1 ATCC 13075, Pseudomonas aeruginosa DSMZ 50071, Klebsiella pneumoniae, Escherichia coli ATCC 25922, Enterococcus faecium, Enterococcus faecalis ATCC 29212, Enterobacter aerogenes ATCC 13048, Candida albicans DSMZ 1386 ve Bacillus subtilis DSMZ 1971 gibi 15 mikroorganizmaya karşı disk difüzyon
metodu ve MİK testi kullanılarak, antimikrobiyal aktiviteleri açısından
araştırılmıştır. Sonuçlar sefazolin, klindamisin, kloramfenikol,
siprofloksasin, amoksisilin/klavulanik asit, sülfametoksazol/trimetoprim,
seftriakson, gentamisin, ampisilin, sefalotin, sefuroksim ve vankomisin olmak
üzere 11 standart antibiyotik ile karşılaştırılmıştır. Ekstraktlar ayrıca GC-MS
kullanılarak kimyasal olarak analiz edilmiştir.



Sonuçlar: Sonuç olarak, turp yağının en yüksek aktiviteyi
göstererek bütün mikroorganizmalara, ısırgan yağının ise
S. epidermidis hariç
bütün mikroorganizmalara etkili olduğu gözlenmiştir. En düşük aktivite ise nar
yağında gözlenmiştir.



Önemli vurgular: Çalışmanın sonuçları, açık bir şekilde, ısırgan
otu, turp ve nardan elde edilen yağların destekleyici sağlık ürünü olarak ve
ilave çalışmalarla medikal amaçlı olarak da kullanılabileceğini ortaya
koymaktadır.




References

  • Abbasi A.M, Khan M.A., Ahmad M., Jahan S. & Sultana S. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Pakistan J. Ethnopharmocol, 128, 322-335.
  • Abdou I.A., Abou-Zeid A.A., El-Sherbeeny M.R. & Abou-El-Gheat Z.H. (1972). Antimicrobial activities of Allium sativum, Allium cepa, Raphanus sativus, Capsicum frutescens, Eruca sativa, Allium kurrat on bacteria. Plant Foods for Human Nutrition, 22(1), 29-35. Ahmad F., Hasan I., Chishti D.K. & Ahmad H. (2012). Antibacterial activity of Raphanus sativus Linn. seed extract. Global Journal of Medical Research, 12(11), 25-34.
  • Altieri C., Cardillo D., Bevilacqua A. & Singaglia M. (2007). Inhibition of Aspergillus ssp. and Penicillium spp. by fatty acids and their monoglycerides. J. Food Protection, 70, 1206-1212.
  • Altuner E.M., Akata I. & Canli K. (2012a). In vitro antimicrobial screening of Bovista nigrescens (Pers.). Kastamonu U. J. For. Fac., 12, 90-96.
  • Altuner E.M., Akata I. & Canli K. (2012b.) In vitro antimicrobial screening of Cerena unicolor (Bull.) Murrill (Polyporaceae Fr. Ex Corda). Fresen. Environ. Bullet., 21, 3704-3710.
  • Altuner E.M. & Akata I. (2010.) Antimicrobial activity of some macrofungi extracts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 45-49.
  • Altuner E.M., Canli K. & Akata I. (2014.) Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology, 8(1), 539-545.
  • Altuner E.M. & Canli K. (2012). In vitro antimicrobial screening of Hypnum andoi A.J.E. Sm. Kastamonu U. J. For. Fac., 12, 97-101.
  • Altuner, E.M., Cetin B. & Cökmüs C. (2010a). Antimicrobial activity of Tortella tortulosa (Hedw.) Limpr. extracts, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 10(2), 111-116.
  • Altuner E.M., Cetin B. & Cökmüs C. (2010b). Antimicrobial Screening of Some Mosses Collected From Anatolia. Pharmacognosy Magazine, 6 (22), 56.
  • Altuner E.M. & Çetin B. (2009). Antimicrobial activity of Thuidium delicatulum (Bryopsida) extracts. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 85-92.
  • Altuner E.M., Ceter T. & Islek C. (2010c). Investigation of antifungal activity of Ononis spinosa L. ash used for the therapy of skin infections as folk remedies. Mikrobiyoloji Bülteni, 44(4), 633-639.
  • Altuner E.M., Ceter T., Demirkapi D., Ozkay K., Hayal U. & Eser G. (2011a). Investigation on antimicrobial effects of some lichen species collected from Kastamonu region. Commun. Fac. Sci. Univ. Ank. Series C, 23(1-2), 21-31.
  • Altuner E.M., Ceter T., Bayar E., Aydin S., Arici F., Suleymanoglu G. & Edis A. (2011b). Investigation on antimicrobial effects of some moss species collected from Kastamonu region, Commun. Fac. Sci. Univ. Ank. Series C, 23(1-2), 33-43.
  • Altuner E.M. (2011). Investigation of antimicrobial activity of Punica granatum L. fruit peel ash used for protective against skin infections as folk remedies especially after male circumcision. African Journal of Microbiology Research, 5(20), 3339-3342.
  • Andrews J.M. (2003). BSAC standardized disc susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60, 20-41.
  • AOAC. (1990). Official methods of analysis. 15th ed. Virginia: Association of Official Analytical Chemists, Inc.,
  • Ates D.A. & Erdogrul O.T. (2003). Antimicrobial activities of various medicinal and commercial plant extracts. Turk. J. Biol., 27, 157-162.
  • Bailey A.V., De Lucca II A.J., Moreau J.P. (1989). Antimicrobial properties of some erucic acid-glycolic acid derivatives. JAOCS, 66(7), 932-934.
  • Balouiri M., Sadiki M. & Ibnsouda S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Bazes A., Silkina A., Douzenel P., Faÿ F., Kervarec N., Morin D., Berge J.P. & Bourgougnon N. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol., 21, 395-403.
  • Bin Sina A.A. (1987). Al-qanun fi’-tib Book II. New Delhi: Institute of history of medicine and medical research,
  • Caceres A. (1987). Screening on antimicrobial activity of plants popular in Guatemala for the treatment of dermatomucosal diseases. J. Ethnopharm., 20, 223-237.
  • Canlı K., Akata I. & Altuner E.M. (2016c). In vitro antimicrobial activity screening of Xylaria hypoxylon. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 42-46.
  • Canlı K., Altuner E.M., Akata I., Türkmen Y. & Üzek U. (2016a). In vitro antimicrobial screening of Lycoperdon lividium and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Bangladesh Journal of Pharmacology, 11(2), 389-394.
  • Canlı K., Altuner E.M. & Akata I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10:321-325.
  • Canlı K., Çetin B., Altuner E.M., Türkmen Y., Üzek U. & Dursun H. (2014). In vitro antimicrobial screening of Hedwigia ciliata var. leucophaea and determination of the ethanol extract composition by gas chromatography/mass spectrometry (GC/MS). Journal of Pure and Applied Microbiology, 8(4), 2987-2998.
  • Canlı K., Şimşek Ö., Yetgin A. & Altuner E.M. (2017a). Determination of the chemical composition and antimicrobial activity of Frankenia hirsuta, Bangladesh Journal of Pharmacology, 12(4), 463-469.
  • Canlı K., Yetgin A. Akata I. Altuner E.M. (2016b). In vitro antimicrobial activity of Angelica sylvestris roots. International Journal of Biological Sciences, 1(1), 1-7.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2016d). In vitro antimicrobial screening of Aquilaria agallocha roots. African Journal of Traditional, Complementary and Alternative Medicines, 13(5), 178-181.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2016e). In vitro antimicrobial activity screening of Rheum rhabarbarum roots. International Journal of Pharmaceutical Sciences Invention, 5(2), 1-4.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2017b). Antimicrobial activity and chemical composition screening of Anacyclus pyrethrum root, Indian Journal of Pharmaceutical Education and Research, 51(3s), 244-248.
  • Canlı K., Yetgin A., Akata I. & Altuner EM. (2017c). Antimicrobial activity and chemical composition screening of Epilobium montanum root. Indian Journal of Pharmaceutical Education and Research, 51(3s), 239-243.
  • Chopra R.N., Nayar S.L. & Chopra I.C. (1986). Glossary of Indian medicinal plants (including the supplements). New Delhi: Council of Scientific and Industrial Research.
  • Cos P., Vlietinck A.J., Vanden Berghe D. & Maes L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology, 106, 290-302.
  • Devi A., Singh V. & Bhatt A.B. (2011). Comparative antibacterial study of different extract of pomegranate and its wild variety. IJPSR, 2(10), 2647-2650.
  • Dilika F., Bremner P.D. & Meyer J.J. (2000). Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia, 71(4), 450-452.
  • Faucher J.L. & Avril J.L. (2002). Bactériologie générale et médicale. Tome 1. Ellipses (Ed.), Paris.
  • Glover D.E., Whittemore M.S. & Bryant S.D. (1997). Methods and compositions for controlling biofouling using polyglycol fatty acid esters. Int. Patent Application, WO97/11912.
  • Gutiérrez R.M.P. & Perez R.L. (2004). Raphanus sativus (radish): Their chemistry and biology. The Scientific World Journal, 4, 811-837.
  • Gülçin I., Kührevioğlu O.I., Oktay M. & Büyükokuroğlu M.E. (2004). Antioxidant, antimicrobial, antiulcer, and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90, 205-215.
  • Hammer K.A., Carson C.F. & Riley T.V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985-990.
  • Health Beckon. 17 Amazing Benefits and Uses of Pomegranate Seed Oil, (2014). https://www.healthbeckon.com/pomegranate-seed -oil-benefits/.
  • Hidron A.I., Edwards J.R. & Patel J. (2008). NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol., 29, 996-1011.
  • Huang C.B., George B. & Ebersole J.L. (2011). Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol., 55, 555-560.
  • Ilhan S., Savaroğlu F., Çolak F., Iscen C.F. & Erdemgil F.Z. (2006). Antimicrobial activity of Palustriella commutata (Hedw.) Ochyra extracts (Bryophyta). Turk. J. Biol,, 30, 149-152.
  • Kabara J.J., Swieczkowski D.M., Conley A.J. & Tuant J.P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother., 2, 23-28.
  • Kan Y., Orhan I., Koca U., Özçelik B., Aslan S., Kartal M. & Küsmenoğlu S. (2009). Fatty acid profile and antimicrobial effect of the seed oils of Urtica dioica and U. pilulifera. Turk. J. Pharm. Sci., 6(1), 21-30.
  • Kelet O., Bakırel T., Ak S. & Alpmar A. (2001). The antibacterial activity of some plants used for medicinal purposes against pathogens of veterinary importance. Folia Veterinaria, 45, 243-246.
  • Kew Science. Urtica dioica L., (2017a). http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:260630-2.
  • Kew Science. Raphanus raphanistrum subsp. sativus L. Domin, (2017b). http://powo.science.kew .org/taxon/urn:lsid:ipni.org:names:77159305-1.
  • Kritikar R.K. & Basu B.D. (1987). Indian medicinal Plants. Vol. I. 2nd. ed. International Book Distributors, Dehradun, India.
  • Kukrić Z.Z., Topalić-Trivunović L.N., Kukavica B.M., Matoš S.B., Pavičić S.S., Boroja M.M. & Savić A.V. (2012). Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L). APTEFF, 43, 1-342.
  • Liu S., Weibin R., Jing L., Hua X., Jingan W., Yubao G. & Jingguo W. (2008). Biological control of phytopathogenic fungi by fatty acids. Mycopathologia, 166, 93-102.
  • McGraw L.J., Jager A.K. & Van Staden J. (2002). Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia, 73, 431-433.
  • Naz S., Siddiqi R., Ahmad S., Rasool S.A. & Sayeed S.A. (2007). Antibacterial activity directed isolation of compounds from Punica granatum. Journal of Food Science, 72(9), 341-345.
  • Nikaido H. (1998). Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin. Infect. Dis., 27, 32-41.
  • Obritsch M.D., Fish D.N., MacLaren R. & Jung R. (2005). Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy, 25(10), 1353-1364.
  • Okeke I.N., Laxmaninarayan R., Bhutta Z.A., Duse A.G., Jenkins P., O’Brien T.F., Pablos-Mendez A. & Klugman K.P. (2005). Antimicrobial resistance in developing countries. Part 1: recent trends and current status. Lancet Infectious Diseases., 5, 481-493.
  • Özkinali, S., Şener, N., Gür, M., Güney, K. & Olgun Ç. (2017). Antimicrobial activity and chemical composition of Coriander & Galangal essential oil. Indian Journal of Pharmaceutical Education and Research, 51, 221-224.
  • Placek L.L. (1963). Review on petroselinic acid and its derivativees. J. Am. Oil Chem. Soc., 40, 319-329.
  • Reddy M.K., Gupta S.K., Jacob M.R., Khan S.I. & Ferreira D. (2007). Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med., 73(5), 461-467.
  • Richards M.J., Edwards J.R., Culver D.H. & Gaynes R.P. (1999). Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med., 27, 887-892.
  • Rieger M. Pomegranate tree (Punica granatum l.) taxonomy, (2017). www.fruit-crops.com/pomegr anate-punica-granatum-l/.
  • Risk M., Harrison P. & Lewis J. 1997. Wood preserving composition. Int. Patent Application. WO 97/34747.
  • Rustaiyan A., Samiee K., Kurabaslu S.E. & Taghizadeh M. (2013). Extraction, analysis and study of antioxidant activity and total phenolic of pomegranate (Punica granatum L.) seed oil from four different regions of Iran (Yazd, Saveh, Kashan and Varamin). Nature and Science, 11(2), 14-18.
  • Seidel V. & Taylor P.W. (2004). In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agent., 23, 613-619.
  • Singh R.P., Chidambara Murthy K.N. & Jayaprakasha G.K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem., 50(1), 81-86.
  • Syed G.W., Syed A.S. & Oh L.A. (2010). Risk evaluation under various speculations of antibiotic usage; A cohort survey among outpatients of Pinang, Malaysia. Eur. J. Gen. Med., (7), 303-309.
  • Tanveer A., Farooq U., Akram K., Shafi A., Sarfraz F. & Rehman H. 2016. Antibacterial potential of pomegranate peel and seed extracts against food borne pathogens. Asian J Agri Biol., 4(3), 60-64.
  • Tsuchida M. & Morishlta Y. (1995). Antibacterial activity and bacterial degradation of linoleic acid hydroperoxide. Bifidobacteria Microflora, 14, 67-74.
  • Villegas M.V. & Quinn J.P. (2004). An update on antibiotic-resistant gram-negative bacteria. Infections in Medicine, 21, 595-599. WHO. (2007). The world health report 2007: A safer future: global public health security in the 21st century.

Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds

Year 2018, Volume: 18 Issue: 3, 236 - 247, 28.12.2018
https://doi.org/10.17475/kastorman.498413

Abstract

Abstract



Aim of study: The aim of
this study is to put forward the antimicrobial activity of cold pressed oils
obtained from seeds of nettle (Urtica
dioica
), radish (Raphanus sativus)
and pomegranate (Punica granatum).



Material and
Methods
: Oils of
these seeds were analysed for their antibacterial and antifungal activities by
the disk diffusion and MIC tests against fifteen microorganisms, Staphylococcus epidermidis DSMZ 20044, Staphylococcus aureus ATCC 25923, Salmonella typhimurium SL 1344, Salmonella kentucky, Salmonella infantis, Salmonella enteritidis, Pseudomonas fluorescens P1 ATCC 13075, Pseudomonas aeruginosa DSMZ 50071, Klebsiella pneumoniae, Escherichia coli ATCC 25922, Enterococcus faecium, Enterococcus faecalis ATCC 29212, Enterobacter aerogenes ATCC 13048, Candida albicans DSMZ 1386 and Bacillus subtilis DSMZ 1971. The results
were compared against 11 standard antibiotics, which are cefazolin,
clindamycin, chloramphenicol, ciprofloxacin, amoxicillin/clavulanic acid,
sulfamethoxazole/trimethoprim, ceftriaxone, gentamicin, ampicillin, cephalothin,
cefuroxime and vancomycin. The extracts were also chemically analysed by using
GC-MS.



Main results: As a result, radish oil is observed to be active
against all microorganisms with the highest activity, where nettle oil is
active against all microorganisms except for S. epidermidis. The lowest activity was observed in pomegranate
oil.



Highlights: The results of the study clearly puts forward that
oils obtained from nettle, radish and pomegranate could have a possible
medicinal use.

References

  • Abbasi A.M, Khan M.A., Ahmad M., Jahan S. & Sultana S. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Pakistan J. Ethnopharmocol, 128, 322-335.
  • Abdou I.A., Abou-Zeid A.A., El-Sherbeeny M.R. & Abou-El-Gheat Z.H. (1972). Antimicrobial activities of Allium sativum, Allium cepa, Raphanus sativus, Capsicum frutescens, Eruca sativa, Allium kurrat on bacteria. Plant Foods for Human Nutrition, 22(1), 29-35. Ahmad F., Hasan I., Chishti D.K. & Ahmad H. (2012). Antibacterial activity of Raphanus sativus Linn. seed extract. Global Journal of Medical Research, 12(11), 25-34.
  • Altieri C., Cardillo D., Bevilacqua A. & Singaglia M. (2007). Inhibition of Aspergillus ssp. and Penicillium spp. by fatty acids and their monoglycerides. J. Food Protection, 70, 1206-1212.
  • Altuner E.M., Akata I. & Canli K. (2012a). In vitro antimicrobial screening of Bovista nigrescens (Pers.). Kastamonu U. J. For. Fac., 12, 90-96.
  • Altuner E.M., Akata I. & Canli K. (2012b.) In vitro antimicrobial screening of Cerena unicolor (Bull.) Murrill (Polyporaceae Fr. Ex Corda). Fresen. Environ. Bullet., 21, 3704-3710.
  • Altuner E.M. & Akata I. (2010.) Antimicrobial activity of some macrofungi extracts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 45-49.
  • Altuner E.M., Canli K. & Akata I. (2014.) Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology, 8(1), 539-545.
  • Altuner E.M. & Canli K. (2012). In vitro antimicrobial screening of Hypnum andoi A.J.E. Sm. Kastamonu U. J. For. Fac., 12, 97-101.
  • Altuner, E.M., Cetin B. & Cökmüs C. (2010a). Antimicrobial activity of Tortella tortulosa (Hedw.) Limpr. extracts, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 10(2), 111-116.
  • Altuner E.M., Cetin B. & Cökmüs C. (2010b). Antimicrobial Screening of Some Mosses Collected From Anatolia. Pharmacognosy Magazine, 6 (22), 56.
  • Altuner E.M. & Çetin B. (2009). Antimicrobial activity of Thuidium delicatulum (Bryopsida) extracts. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 85-92.
  • Altuner E.M., Ceter T. & Islek C. (2010c). Investigation of antifungal activity of Ononis spinosa L. ash used for the therapy of skin infections as folk remedies. Mikrobiyoloji Bülteni, 44(4), 633-639.
  • Altuner E.M., Ceter T., Demirkapi D., Ozkay K., Hayal U. & Eser G. (2011a). Investigation on antimicrobial effects of some lichen species collected from Kastamonu region. Commun. Fac. Sci. Univ. Ank. Series C, 23(1-2), 21-31.
  • Altuner E.M., Ceter T., Bayar E., Aydin S., Arici F., Suleymanoglu G. & Edis A. (2011b). Investigation on antimicrobial effects of some moss species collected from Kastamonu region, Commun. Fac. Sci. Univ. Ank. Series C, 23(1-2), 33-43.
  • Altuner E.M. (2011). Investigation of antimicrobial activity of Punica granatum L. fruit peel ash used for protective against skin infections as folk remedies especially after male circumcision. African Journal of Microbiology Research, 5(20), 3339-3342.
  • Andrews J.M. (2003). BSAC standardized disc susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60, 20-41.
  • AOAC. (1990). Official methods of analysis. 15th ed. Virginia: Association of Official Analytical Chemists, Inc.,
  • Ates D.A. & Erdogrul O.T. (2003). Antimicrobial activities of various medicinal and commercial plant extracts. Turk. J. Biol., 27, 157-162.
  • Bailey A.V., De Lucca II A.J., Moreau J.P. (1989). Antimicrobial properties of some erucic acid-glycolic acid derivatives. JAOCS, 66(7), 932-934.
  • Balouiri M., Sadiki M. & Ibnsouda S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Bazes A., Silkina A., Douzenel P., Faÿ F., Kervarec N., Morin D., Berge J.P. & Bourgougnon N. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol., 21, 395-403.
  • Bin Sina A.A. (1987). Al-qanun fi’-tib Book II. New Delhi: Institute of history of medicine and medical research,
  • Caceres A. (1987). Screening on antimicrobial activity of plants popular in Guatemala for the treatment of dermatomucosal diseases. J. Ethnopharm., 20, 223-237.
  • Canlı K., Akata I. & Altuner E.M. (2016c). In vitro antimicrobial activity screening of Xylaria hypoxylon. African Journal of Traditional, Complementary and Alternative Medicines, 13(4), 42-46.
  • Canlı K., Altuner E.M., Akata I., Türkmen Y. & Üzek U. (2016a). In vitro antimicrobial screening of Lycoperdon lividium and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Bangladesh Journal of Pharmacology, 11(2), 389-394.
  • Canlı K., Altuner E.M. & Akata I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10:321-325.
  • Canlı K., Çetin B., Altuner E.M., Türkmen Y., Üzek U. & Dursun H. (2014). In vitro antimicrobial screening of Hedwigia ciliata var. leucophaea and determination of the ethanol extract composition by gas chromatography/mass spectrometry (GC/MS). Journal of Pure and Applied Microbiology, 8(4), 2987-2998.
  • Canlı K., Şimşek Ö., Yetgin A. & Altuner E.M. (2017a). Determination of the chemical composition and antimicrobial activity of Frankenia hirsuta, Bangladesh Journal of Pharmacology, 12(4), 463-469.
  • Canlı K., Yetgin A. Akata I. Altuner E.M. (2016b). In vitro antimicrobial activity of Angelica sylvestris roots. International Journal of Biological Sciences, 1(1), 1-7.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2016d). In vitro antimicrobial screening of Aquilaria agallocha roots. African Journal of Traditional, Complementary and Alternative Medicines, 13(5), 178-181.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2016e). In vitro antimicrobial activity screening of Rheum rhabarbarum roots. International Journal of Pharmaceutical Sciences Invention, 5(2), 1-4.
  • Canlı K., Yetgin A., Akata I. & Altuner E.M. (2017b). Antimicrobial activity and chemical composition screening of Anacyclus pyrethrum root, Indian Journal of Pharmaceutical Education and Research, 51(3s), 244-248.
  • Canlı K., Yetgin A., Akata I. & Altuner EM. (2017c). Antimicrobial activity and chemical composition screening of Epilobium montanum root. Indian Journal of Pharmaceutical Education and Research, 51(3s), 239-243.
  • Chopra R.N., Nayar S.L. & Chopra I.C. (1986). Glossary of Indian medicinal plants (including the supplements). New Delhi: Council of Scientific and Industrial Research.
  • Cos P., Vlietinck A.J., Vanden Berghe D. & Maes L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology, 106, 290-302.
  • Devi A., Singh V. & Bhatt A.B. (2011). Comparative antibacterial study of different extract of pomegranate and its wild variety. IJPSR, 2(10), 2647-2650.
  • Dilika F., Bremner P.D. & Meyer J.J. (2000). Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia, 71(4), 450-452.
  • Faucher J.L. & Avril J.L. (2002). Bactériologie générale et médicale. Tome 1. Ellipses (Ed.), Paris.
  • Glover D.E., Whittemore M.S. & Bryant S.D. (1997). Methods and compositions for controlling biofouling using polyglycol fatty acid esters. Int. Patent Application, WO97/11912.
  • Gutiérrez R.M.P. & Perez R.L. (2004). Raphanus sativus (radish): Their chemistry and biology. The Scientific World Journal, 4, 811-837.
  • Gülçin I., Kührevioğlu O.I., Oktay M. & Büyükokuroğlu M.E. (2004). Antioxidant, antimicrobial, antiulcer, and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90, 205-215.
  • Hammer K.A., Carson C.F. & Riley T.V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985-990.
  • Health Beckon. 17 Amazing Benefits and Uses of Pomegranate Seed Oil, (2014). https://www.healthbeckon.com/pomegranate-seed -oil-benefits/.
  • Hidron A.I., Edwards J.R. & Patel J. (2008). NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol., 29, 996-1011.
  • Huang C.B., George B. & Ebersole J.L. (2011). Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol., 55, 555-560.
  • Ilhan S., Savaroğlu F., Çolak F., Iscen C.F. & Erdemgil F.Z. (2006). Antimicrobial activity of Palustriella commutata (Hedw.) Ochyra extracts (Bryophyta). Turk. J. Biol,, 30, 149-152.
  • Kabara J.J., Swieczkowski D.M., Conley A.J. & Tuant J.P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother., 2, 23-28.
  • Kan Y., Orhan I., Koca U., Özçelik B., Aslan S., Kartal M. & Küsmenoğlu S. (2009). Fatty acid profile and antimicrobial effect of the seed oils of Urtica dioica and U. pilulifera. Turk. J. Pharm. Sci., 6(1), 21-30.
  • Kelet O., Bakırel T., Ak S. & Alpmar A. (2001). The antibacterial activity of some plants used for medicinal purposes against pathogens of veterinary importance. Folia Veterinaria, 45, 243-246.
  • Kew Science. Urtica dioica L., (2017a). http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:260630-2.
  • Kew Science. Raphanus raphanistrum subsp. sativus L. Domin, (2017b). http://powo.science.kew .org/taxon/urn:lsid:ipni.org:names:77159305-1.
  • Kritikar R.K. & Basu B.D. (1987). Indian medicinal Plants. Vol. I. 2nd. ed. International Book Distributors, Dehradun, India.
  • Kukrić Z.Z., Topalić-Trivunović L.N., Kukavica B.M., Matoš S.B., Pavičić S.S., Boroja M.M. & Savić A.V. (2012). Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L). APTEFF, 43, 1-342.
  • Liu S., Weibin R., Jing L., Hua X., Jingan W., Yubao G. & Jingguo W. (2008). Biological control of phytopathogenic fungi by fatty acids. Mycopathologia, 166, 93-102.
  • McGraw L.J., Jager A.K. & Van Staden J. (2002). Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia, 73, 431-433.
  • Naz S., Siddiqi R., Ahmad S., Rasool S.A. & Sayeed S.A. (2007). Antibacterial activity directed isolation of compounds from Punica granatum. Journal of Food Science, 72(9), 341-345.
  • Nikaido H. (1998). Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin. Infect. Dis., 27, 32-41.
  • Obritsch M.D., Fish D.N., MacLaren R. & Jung R. (2005). Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy, 25(10), 1353-1364.
  • Okeke I.N., Laxmaninarayan R., Bhutta Z.A., Duse A.G., Jenkins P., O’Brien T.F., Pablos-Mendez A. & Klugman K.P. (2005). Antimicrobial resistance in developing countries. Part 1: recent trends and current status. Lancet Infectious Diseases., 5, 481-493.
  • Özkinali, S., Şener, N., Gür, M., Güney, K. & Olgun Ç. (2017). Antimicrobial activity and chemical composition of Coriander & Galangal essential oil. Indian Journal of Pharmaceutical Education and Research, 51, 221-224.
  • Placek L.L. (1963). Review on petroselinic acid and its derivativees. J. Am. Oil Chem. Soc., 40, 319-329.
  • Reddy M.K., Gupta S.K., Jacob M.R., Khan S.I. & Ferreira D. (2007). Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med., 73(5), 461-467.
  • Richards M.J., Edwards J.R., Culver D.H. & Gaynes R.P. (1999). Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med., 27, 887-892.
  • Rieger M. Pomegranate tree (Punica granatum l.) taxonomy, (2017). www.fruit-crops.com/pomegr anate-punica-granatum-l/.
  • Risk M., Harrison P. & Lewis J. 1997. Wood preserving composition. Int. Patent Application. WO 97/34747.
  • Rustaiyan A., Samiee K., Kurabaslu S.E. & Taghizadeh M. (2013). Extraction, analysis and study of antioxidant activity and total phenolic of pomegranate (Punica granatum L.) seed oil from four different regions of Iran (Yazd, Saveh, Kashan and Varamin). Nature and Science, 11(2), 14-18.
  • Seidel V. & Taylor P.W. (2004). In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agent., 23, 613-619.
  • Singh R.P., Chidambara Murthy K.N. & Jayaprakasha G.K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem., 50(1), 81-86.
  • Syed G.W., Syed A.S. & Oh L.A. (2010). Risk evaluation under various speculations of antibiotic usage; A cohort survey among outpatients of Pinang, Malaysia. Eur. J. Gen. Med., (7), 303-309.
  • Tanveer A., Farooq U., Akram K., Shafi A., Sarfraz F. & Rehman H. 2016. Antibacterial potential of pomegranate peel and seed extracts against food borne pathogens. Asian J Agri Biol., 4(3), 60-64.
  • Tsuchida M. & Morishlta Y. (1995). Antibacterial activity and bacterial degradation of linoleic acid hydroperoxide. Bifidobacteria Microflora, 14, 67-74.
  • Villegas M.V. & Quinn J.P. (2004). An update on antibiotic-resistant gram-negative bacteria. Infections in Medicine, 21, 595-599. WHO. (2007). The world health report 2007: A safer future: global public health security in the 21st century.
There are 72 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ergin Murat Altuner

Talip Çeter This is me

Mahmut Gür This is me

Kerim Güney This is me

Bayram Kıran This is me

Hana Ealoma Akwıeten This is me

Sana İ. Soulman This is me

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 18 Issue: 3

Cite

APA Altuner, E. M., Çeter, T., Gür, M., Güney, K., et al. (2018). Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu University Journal of Forestry Faculty, 18(3), 236-247. https://doi.org/10.17475/kastorman.498413
AMA Altuner EM, Çeter T, Gür M, Güney K, Kıran B, Akwıeten HE, Soulman Sİ. Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu University Journal of Forestry Faculty. December 2018;18(3):236-247. doi:10.17475/kastorman.498413
Chicago Altuner, Ergin Murat, Talip Çeter, Mahmut Gür, Kerim Güney, Bayram Kıran, Hana Ealoma Akwıeten, and Sana İ. Soulman. “Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds”. Kastamonu University Journal of Forestry Faculty 18, no. 3 (December 2018): 236-47. https://doi.org/10.17475/kastorman.498413.
EndNote Altuner EM, Çeter T, Gür M, Güney K, Kıran B, Akwıeten HE, Soulman Sİ (December 1, 2018) Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu University Journal of Forestry Faculty 18 3 236–247.
IEEE E. M. Altuner, T. Çeter, M. Gür, K. Güney, B. Kıran, H. E. Akwıeten, and S. İ. Soulman, “Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds”, Kastamonu University Journal of Forestry Faculty, vol. 18, no. 3, pp. 236–247, 2018, doi: 10.17475/kastorman.498413.
ISNAD Altuner, Ergin Murat et al. “Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds”. Kastamonu University Journal of Forestry Faculty 18/3 (December 2018), 236-247. https://doi.org/10.17475/kastorman.498413.
JAMA Altuner EM, Çeter T, Gür M, Güney K, Kıran B, Akwıeten HE, Soulman Sİ. Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu University Journal of Forestry Faculty. 2018;18:236–247.
MLA Altuner, Ergin Murat et al. “Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds”. Kastamonu University Journal of Forestry Faculty, vol. 18, no. 3, 2018, pp. 236-47, doi:10.17475/kastorman.498413.
Vancouver Altuner EM, Çeter T, Gür M, Güney K, Kıran B, Akwıeten HE, Soulman Sİ. Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu University Journal of Forestry Faculty. 2018;18(3):236-47.

14178  14179       14165           14166           14167            14168