Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Türkiye’de Yayılış Gösteren Altı Ağaç Türünün Yapraklarındaki Kimyasal Bileşenlere Demir-Çelik Fabrikası ve Yoğun Trafiğin Etkileri

Year 2018, Volume 18, Issue 3, 253 - 271, 28.12.2018
https://doi.org/10.17475/kastorman.498746

Abstract

Öz

Çalışmanın amacı: Ağaçlandırma, kentsel çevrenin kalitesinin artırılmasında önemli bir rol oynamaktadır.  Ancak, hava kirliliği ağaçların gelişimini ve sağlığını etkilemektedir. Bu çalışmada; demir-çelik fabrikası ve trafik kirliliğinin olduğu yerde bulunan altı ağaç türünün  (Akçaağaç, Dişbudak, Servi, Karaçam, Çınar ve Kavak) yapraklarında kimyasal bileşenleri üzerindeki etkileri ve ayrıca bu ağaçların hava kirliliğine toleransı ortaya konulmuştur.

Materyal ve Yöntem: Yaprak ve iğne yaprak örnekleri Nisan ve Temmuz aylarında toplanılmıştır ve örneklerde fotosentetik pigmentler, lipit peroksidasyon ve hidrojen peroksit seviyesi,  enzimatik ve non-enzimatik antioksidant bileşikler ölçülmüştür.

Sonuçlar: Ağaçlara ait yaprak ve iğne yaprak örneklerinde kimyasal bileşenler miktarında istatistiksel olarak önemli değişimler olmakla birlikte, her bir kimyasal değer, kirletici tipi, zaman ve ağaç çeşidine göre farklı etkilenmiştir. Çalışmada, pigment, MDA, H2O2 ve APX değerleri Temmuz ayında daha düşüktür ancak CAT, SOD, prolin ve protein miktarı ise daha yüksektir. Akçaağaç trafik kirliliğine yüksek dayanım gösterirken, dişbudak ağacı her iki kirliliğe yüksek tolerans göstermiştir. Ağaçlar içerisinde kavak ağacı ise trafik kirliliğine duyarlı bulunmuştur.

Araştırma vurguları: Bu sonuçlar gelecekte yapılacak olan çalışmalarda ağaç türlerinin hava kirliliğinin indirgenmesindeki rollerinin anlaşılması ve sağlıklı bir şekilde düzenlenmesinde kullanılabildiği gibi kentsel çevreye yararlı ormanların yönetiminde de kullanılabilinir.

References

  • Anoob, P., Santhoshkumar, A.V., & Roby, P.C. (2017). Impact of particulate pollution on photosynthesis, transpiration and plant water potential of teak (Tectona grandis L.). Current Science (00113891), 112(6), 1272-1276.
  • Arnon D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24, 1-15.
  • Bates L.S., Waldern R.P. & Teare I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Bayhan Y.K. (2016). Effects of Some Plants Structure and the Metabolites of Cement Dust Emissions. Kastamonu Univ. J. Forestry Faculty, 16(1), 147-152.
  • Bergmeyer H.U. (1970). Methoden der Enzymatischen Analyse. Akademie Verlag, 1, 636-562.
  • Bhattacharya, T., Kriplani, L., & Chakraborty, S. (2013). Seasonal Variation in Air Pollution Tolerance Index of Various Plant Species of Baroda City. Universal Journal of Environmental Research & Technology, 3(2), 199-208.
  • Bradford M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Ann. Biochem., 72, 248-254.
  • Cakmak I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J. Exp. Bot., 45, 1259-1266.
  • Cakmak I. & Horst W.J. (1991). Effect of Aluminium on lipid peroxidation, Superoxide dismutase, Catalase and Peroxidase activities in root tips of Soybean (Glycine max). Physiol. Plant., 83, 463-468.
  • Chandawat D.K., Verma P.U., Solanki H.A., Patel Y.M. (2014). Role of Total Phenol in The Resistance Mechanism of Plants Against Air Pollution. Biolife, 2(2),586-592.
  • Chatterjee C., Dube B.K., Sinha P., & Srivastava P. (2004). Detrimental effects of lead phytotoxicity on growth, yield and metabolism of rice. Commun. Soil Sci. Plant Anal., 35(1,2), 255-265.
  • Chauhan A. (2010). Photosynthetic Pigment Changes in Some Selected Trees induced by Automobile Exhaust in Dehradun, Uttarakhand. New York Sci. J., 3(2), 45-51.
  • Cordoba F., Marquez-Garcıa B., & Fernandez-Recamales A. (2012). Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J. Bot., 12, 1- 6.
  • Cuming A.C. & Bennet J. (1981). Biosynthesis of the Light-Harvesting Chlorophyll a/b Protein Control of Messenger RNA Activity by Light. Eur. J. Biochem., 118, 71 -80.
  • Cunyan W. & Xuefeng W. (2014). Effects of foliar dust on plant reflectance spectra and physiological ecology. Chin. J. Appl. Environ. Biol., 6,1132-1138. Çavuşoğlu K., Kılıç S. & Kılıç M. (2009). Effects of lead (Pb) pollution caused by vehicles on the anatomy of pine (Pinus nigra Arn. subsp. pallasiana) and cedar (Cedrus libani A. Rich.) leaves. Biol. Divers. Conserv., 2(3), 92-98.
  • Deniz M. (2010). Effect of thermal power plant pollution on mineral nutrition and antioxidative defence mechanism on eucalyptus and morus species. Çukurova Uniıversity Institute of Natural and Applied Sciences Department of Biology, Adana, Turkey.
  • Dubey D. & Pandey A. (2011). Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int. J. Sci. Nat., 2(2), 395-401.
  • Fermer E.F. & Muller M.J. (2013). Reactive oxygen species mediated lipid peroxidation and RES activated signaling. Annu. Rev. Plant. Biol., 4,429-450.
  • Foyer C.H. & Noctor G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol., 155, 2-18.
  • Geeta C. & Namrata C. (2014). Effect of air pollution on the photosynthetic pigments of selected plant species along roadsides in Jamshedpur, Jharkhand. Res. Plant Biol., 4(5), 65-68.
  • Gheorghe I.F. & Ion B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources. Edit by Khalla, M.K. Chapter 12, DOI: 10.5772/17660.
  • Halbwacts G. (1984). Organismal responses of higher plants to atmospheric pollutants: sulphur dioxide and fluoride. Air pollution and Plant Life. Edit by Treshovv, M. Chapter 9, 175-213. John Wiley and Sons Ltd.
  • Hamid N. & Jawaid F. (2009). Effect of short term exposure of two different concentrations of sulphur dioxide and nitrogen dioxide mixture on some biochemical parameter of soybean (Glycine max L. Merr.). Pakistan J. Bot., 41, 2223-2228.
  • Iqbal M.Z. & Shafig M., Zaidi Q.S., Athar M. (2015). Effect of automobile pollution on chlorophyll content of roadside urban trees. Global J. Environ. Sci. Manage., 1(4),283-296.
  • Joshi P.C. & Swami A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plant species. J. Environ. Biol., 30, 295-298.
  • Katiyar V. & Dubey P.S. (2001). Sulphur dioxide sensitivity on two stage of leaf development in a few tropical tree species, Indian. J. Environ Toxicol., 11,78-81.
  • Keller J. & Lamprecht R. (1995). Road dust as an indicator for air pollution transport and deposition: An application of SPOT imagery. Remote Sens. Environ., 54,1-12.
  • Kozuharova, E., Nedyalkova, M., Gergov, G. & Simeonov, V. (2017). Multivariate statistical classification of plant features - the case with onobrychis pindicola subsp. Urumovii degen & dren. Comp. Rend. Acad. Bulg. Sci., 70(11), 1531 – 1538.
  • Kumaran A. & Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem., 97, 109-114.
  • Langmeier M. & Ginsburg S., Matile P. (1993). Chlorophyll breakdown in senescent leaves: demonstration of Mg-dechelatase activity. Physiol. Plant., 89, 347-353.
  • Lutts S., Kinet J.M. & Bouharmont J. (1996). NaCl-Induced senescence in leaves of rice (Oryza sativa L.) Cultivars differing in salinity resistance. Ann. Bot., 78, 389-398.
  • Mattioli R., Costantino P. & Trovato M. (2009). Proline accumulation in plants- not only stress. Plant Signal. Behav., 4, 1016-1018.
  • Michalak A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud., 15(4), 523-530.
  • Miller P.R. & McBride J. (1999). Oxidant air pollution impacts in the montane forests of southern california: The San Bernadino Mountain Case Study. New York: Springer-Verlag.
  • Muszyńska E., Kałużny K. & Hanus-Fajerska E. (2014). Phenolic compounds in Hippophaë rhamnoides leaves collected from heavy metals plants in urban areas and landscape. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, 11-14.
  • Mutlu S., Atıcı Ö. & Kaya Y. (2009). Effect of cement dust on the diversity and the antioxidant enzyme activities of plants growing around a cement factory. Fresen. Environ. Bull., 18(10),1823-1827.
  • Nakano Y. & Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867-880.
  • Oleksyn J. (1988). Height growth of different European Scot pine (Pinus sylvestris L.) provenances in a heavily polluted and a control environment. Environ. Pollut., 55(4), 289-299.
  • Palma J.M., Sandalino L.M., Corpas F.J., Romero- Puertas M.C., McCharty I. & Del Rio L.A. (2002). Plant proteases, protein degradation, and oxidative stress: Role of peroxisomes. Plant Physiol. Biochem., 40,521-530.
  • Pandey J. & Agrawal M. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. New Phytol., 126(1), 53-61.
  • Pasqualini V., Cannac M., Greff S., Fernandez C. & Ferrat L. (2007). Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings. Molecules, 12, 1614-1622.
  • Patykowski J. & Kołodziejek J. (2016). Changes in antioxidant enzyme activities of european mistletoe (Viscum album L. subsp. album) Leaves as a response to environmental stress caused by pollution of the atmosphere by nitrogen dioxide. Pol. J. Environ. Stud., 25(2):725-732.
  • Prajapati S.K. & Tripathi B.D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual., 37, 865-870.
  • Prusty B.A.K., Mishra P.C. & Azeez P.A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf., 60(2), 228–235.
  • Pukacka S. & Pukacki P.M. (2000). Seasonal changes in antioxidant level of Scots pine (Pinus sylvestris L.) needles exposed to industrial pollution. I. ascorbate and thiol content. Acta Physiol. Plant. 22, 451-456.
  • Sanaeirad H., Majd A., Hossein Abbaspour H. & Peyvandi M. (2017). The effect of air pollution on proline and protein content and activity of nitrate reductase enzyme in Laurus nobilis L. Plants. J. Mol. Biol. Mol. Res., 7(1),99-104.
  • Sarıyıldız, T., Savacı, G. & Aljazwei H.A.A. (2017, May). Assessing the potential for zinc, copper, lead and cadmium phytoremediation with oat plants (Avena sativa Linn.). Ecology Symposium. Kayseri, Turkey.
  • Seinfeld H. (1986). Atmospheric chemistry, and physics of air pollution. Wiley. New York.
  • Seyyednejad S., Koochak H. & Vaezi J. (2013). Changes in antioxidative enzymes activity, protein content and ascorbic acid level in Prosopis juliflora exposed to industrial air pollution. J. Biol. Today's World. 10,482-492.
  • Sharma A. & Tripathi D.B. (2009). Biochemical responses in tree foliage exposed to coal fired power plant emission in seasonally dry tropical environment. Environ. Mon. Assess., 158(4), 197-212.
  • Sharma B., Sharma S. & Bhardwaj S.K., Alam N.M., Parmar Y.S. (May, 2017). Effect of pollution on total chlorophyll content in temperate species growing along national highway 5 in himachal pradesh. Proceedings of ASAR international conference. New Delhi, India.
  • Sharma S., Villamor J.G. & Verslues P.E. (2011). Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol., 157, 292-304.
  • Singleton V.L., Orthofer R. & Lamuela-Raventós R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 299, 152-178.
  • Sofoa A., Dichioa B., Xiloyannisa C. & Masiab A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol. Plant., 121, 58-65.
  • Szczepanska N, Kudlak B, Nedyalkova M, Simeonov V. & Namiesnik J. 2017. Application of chemometric techniques in studying of toxicity of selected commercially available products for infants and children. Environ. Monit. Assess. 189, 309.
  • Takahama U. & Oniki T. (2000). Flavonoid and some other phenolics as substrates of peroxidase: physiological significance of the redox reactions. J. Plant Res., 113, 301.
  • Tiwari S., Agrawal M. & Marshall F.M. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers. Environ. Mon. Assess., 119,15-30.
  • Tobiszewski M, Nedyalkova M., Madurga S., Pena-Pereirad F., Namieśnika J. & Simeonov V. 2018. Pre-selection and assessment of green organic solvents by clustering chemometric tools. Ecotoxicology and Environmental Safety. 147: 292-298.
  • Tripathi A.K. & Gautam M. (2007). Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol., 28(1), 127-132.
  • Velikova V., Yordanov I. & Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci., 151, 59-66.
  • Verma S. & Dubey R.S. (2003). Leads toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 645-655.
  • Wang H., Shi H. & Wang Y. (2014). Effects of Weather, Time, and Pollution Level on the Amount of Particulate Matter Deposited on Leaves of Ligustrum lucidum. Sci. World J., 2015, 1-8.
  • Witham F.H. & Blaydes D.F., Devli R.M. (1971). Experiments in plant physiology. (55-56). Van Nostrand Reinhold Company, New York.
  • Wittenberghe S.V., Alonso L., Verrelst J., Hermans I., Delegido J., Veroustraete F., Valcke R., Moreno J. & Samson R. (2013). Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ. Pollut., 173, 29-37.
  • Woo S.Y., Lee D.K. & Lee Y.K. (2007). Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica, 45(2), 293-295.
  • Yan K., Chen W., He X., Zhang G., Xu S. & Wang, L. (2010). Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ. Exp. Bot., 69,198-204.
  • Yang J., McBride J., Zhou J. & Sun Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78.
  • Yılmaz T. (2015). The effect of heavy metals (lead, zinc, copper and cadmium) on the chlorophyll content of some mosses. MSc Thesis (59 pages), Graduate School of Natural and Applied Sciences Department

Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey

Year 2018, Volume 18, Issue 3, 253 - 271, 28.12.2018
https://doi.org/10.17475/kastorman.498746

Abstract

Abstract

Aim of study: Tree planting can play an important role in improving the quality of the urban environment. On the other hand, air pollutants can affect growth and health of trees. We studied the impacts of air pollution caused by the iron- steel factory and dense traffic on leaf chemical composition and also tree tolerance to the air pollution using six tree species (Maple, Ash tree, Cypress, Black pine, Sycamore and Aspen). 

Material and Methods: The fresh leaf and needle sampling was carried out in April and July, and analyzed for photosynthetic pigments, peroxidation level, hydrogen peroxide, enzymatic antioxidants and non-enzymatic antioxidants.

Main results: Although there were statistically significant variations in the studied chemical compositions of the fresh leaf and needle samples between the six tree species, the pollution types and time, each chemical factor acted different ways with the pollution types and time according to tree species. In general, the pigment values, MDA, H2O2 and APX, concentrations in July were lower than those in April, whereas CAT, SOD, proline and protein concentrations in July were higher than those in April. Maple tree was more resistant to the traffic pollution, while Ash tree was more tolerant to both the pollution types. Among all trees, Aspen was found more susceptible to the traffic pollution

Research highlights: The results could be used in the future research directions to improve our understanding of the role of individual tree species in air pollution reduction and also set up a healthy, well managed urban forest which can provide many ecological benefits to urban environment.

References

  • Anoob, P., Santhoshkumar, A.V., & Roby, P.C. (2017). Impact of particulate pollution on photosynthesis, transpiration and plant water potential of teak (Tectona grandis L.). Current Science (00113891), 112(6), 1272-1276.
  • Arnon D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24, 1-15.
  • Bates L.S., Waldern R.P. & Teare I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Bayhan Y.K. (2016). Effects of Some Plants Structure and the Metabolites of Cement Dust Emissions. Kastamonu Univ. J. Forestry Faculty, 16(1), 147-152.
  • Bergmeyer H.U. (1970). Methoden der Enzymatischen Analyse. Akademie Verlag, 1, 636-562.
  • Bhattacharya, T., Kriplani, L., & Chakraborty, S. (2013). Seasonal Variation in Air Pollution Tolerance Index of Various Plant Species of Baroda City. Universal Journal of Environmental Research & Technology, 3(2), 199-208.
  • Bradford M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Ann. Biochem., 72, 248-254.
  • Cakmak I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J. Exp. Bot., 45, 1259-1266.
  • Cakmak I. & Horst W.J. (1991). Effect of Aluminium on lipid peroxidation, Superoxide dismutase, Catalase and Peroxidase activities in root tips of Soybean (Glycine max). Physiol. Plant., 83, 463-468.
  • Chandawat D.K., Verma P.U., Solanki H.A., Patel Y.M. (2014). Role of Total Phenol in The Resistance Mechanism of Plants Against Air Pollution. Biolife, 2(2),586-592.
  • Chatterjee C., Dube B.K., Sinha P., & Srivastava P. (2004). Detrimental effects of lead phytotoxicity on growth, yield and metabolism of rice. Commun. Soil Sci. Plant Anal., 35(1,2), 255-265.
  • Chauhan A. (2010). Photosynthetic Pigment Changes in Some Selected Trees induced by Automobile Exhaust in Dehradun, Uttarakhand. New York Sci. J., 3(2), 45-51.
  • Cordoba F., Marquez-Garcıa B., & Fernandez-Recamales A. (2012). Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J. Bot., 12, 1- 6.
  • Cuming A.C. & Bennet J. (1981). Biosynthesis of the Light-Harvesting Chlorophyll a/b Protein Control of Messenger RNA Activity by Light. Eur. J. Biochem., 118, 71 -80.
  • Cunyan W. & Xuefeng W. (2014). Effects of foliar dust on plant reflectance spectra and physiological ecology. Chin. J. Appl. Environ. Biol., 6,1132-1138. Çavuşoğlu K., Kılıç S. & Kılıç M. (2009). Effects of lead (Pb) pollution caused by vehicles on the anatomy of pine (Pinus nigra Arn. subsp. pallasiana) and cedar (Cedrus libani A. Rich.) leaves. Biol. Divers. Conserv., 2(3), 92-98.
  • Deniz M. (2010). Effect of thermal power plant pollution on mineral nutrition and antioxidative defence mechanism on eucalyptus and morus species. Çukurova Uniıversity Institute of Natural and Applied Sciences Department of Biology, Adana, Turkey.
  • Dubey D. & Pandey A. (2011). Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. Int. J. Sci. Nat., 2(2), 395-401.
  • Fermer E.F. & Muller M.J. (2013). Reactive oxygen species mediated lipid peroxidation and RES activated signaling. Annu. Rev. Plant. Biol., 4,429-450.
  • Foyer C.H. & Noctor G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol., 155, 2-18.
  • Geeta C. & Namrata C. (2014). Effect of air pollution on the photosynthetic pigments of selected plant species along roadsides in Jamshedpur, Jharkhand. Res. Plant Biol., 4(5), 65-68.
  • Gheorghe I.F. & Ion B. (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources. Edit by Khalla, M.K. Chapter 12, DOI: 10.5772/17660.
  • Halbwacts G. (1984). Organismal responses of higher plants to atmospheric pollutants: sulphur dioxide and fluoride. Air pollution and Plant Life. Edit by Treshovv, M. Chapter 9, 175-213. John Wiley and Sons Ltd.
  • Hamid N. & Jawaid F. (2009). Effect of short term exposure of two different concentrations of sulphur dioxide and nitrogen dioxide mixture on some biochemical parameter of soybean (Glycine max L. Merr.). Pakistan J. Bot., 41, 2223-2228.
  • Iqbal M.Z. & Shafig M., Zaidi Q.S., Athar M. (2015). Effect of automobile pollution on chlorophyll content of roadside urban trees. Global J. Environ. Sci. Manage., 1(4),283-296.
  • Joshi P.C. & Swami A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plant species. J. Environ. Biol., 30, 295-298.
  • Katiyar V. & Dubey P.S. (2001). Sulphur dioxide sensitivity on two stage of leaf development in a few tropical tree species, Indian. J. Environ Toxicol., 11,78-81.
  • Keller J. & Lamprecht R. (1995). Road dust as an indicator for air pollution transport and deposition: An application of SPOT imagery. Remote Sens. Environ., 54,1-12.
  • Kozuharova, E., Nedyalkova, M., Gergov, G. & Simeonov, V. (2017). Multivariate statistical classification of plant features - the case with onobrychis pindicola subsp. Urumovii degen & dren. Comp. Rend. Acad. Bulg. Sci., 70(11), 1531 – 1538.
  • Kumaran A. & Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem., 97, 109-114.
  • Langmeier M. & Ginsburg S., Matile P. (1993). Chlorophyll breakdown in senescent leaves: demonstration of Mg-dechelatase activity. Physiol. Plant., 89, 347-353.
  • Lutts S., Kinet J.M. & Bouharmont J. (1996). NaCl-Induced senescence in leaves of rice (Oryza sativa L.) Cultivars differing in salinity resistance. Ann. Bot., 78, 389-398.
  • Mattioli R., Costantino P. & Trovato M. (2009). Proline accumulation in plants- not only stress. Plant Signal. Behav., 4, 1016-1018.
  • Michalak A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud., 15(4), 523-530.
  • Miller P.R. & McBride J. (1999). Oxidant air pollution impacts in the montane forests of southern california: The San Bernadino Mountain Case Study. New York: Springer-Verlag.
  • Muszyńska E., Kałużny K. & Hanus-Fajerska E. (2014). Phenolic compounds in Hippophaë rhamnoides leaves collected from heavy metals plants in urban areas and landscape. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, 11-14.
  • Mutlu S., Atıcı Ö. & Kaya Y. (2009). Effect of cement dust on the diversity and the antioxidant enzyme activities of plants growing around a cement factory. Fresen. Environ. Bull., 18(10),1823-1827.
  • Nakano Y. & Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867-880.
  • Oleksyn J. (1988). Height growth of different European Scot pine (Pinus sylvestris L.) provenances in a heavily polluted and a control environment. Environ. Pollut., 55(4), 289-299.
  • Palma J.M., Sandalino L.M., Corpas F.J., Romero- Puertas M.C., McCharty I. & Del Rio L.A. (2002). Plant proteases, protein degradation, and oxidative stress: Role of peroxisomes. Plant Physiol. Biochem., 40,521-530.
  • Pandey J. & Agrawal M. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. New Phytol., 126(1), 53-61.
  • Pasqualini V., Cannac M., Greff S., Fernandez C. & Ferrat L. (2007). Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings. Molecules, 12, 1614-1622.
  • Patykowski J. & Kołodziejek J. (2016). Changes in antioxidant enzyme activities of european mistletoe (Viscum album L. subsp. album) Leaves as a response to environmental stress caused by pollution of the atmosphere by nitrogen dioxide. Pol. J. Environ. Stud., 25(2):725-732.
  • Prajapati S.K. & Tripathi B.D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J. Environ. Qual., 37, 865-870.
  • Prusty B.A.K., Mishra P.C. & Azeez P.A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf., 60(2), 228–235.
  • Pukacka S. & Pukacki P.M. (2000). Seasonal changes in antioxidant level of Scots pine (Pinus sylvestris L.) needles exposed to industrial pollution. I. ascorbate and thiol content. Acta Physiol. Plant. 22, 451-456.
  • Sanaeirad H., Majd A., Hossein Abbaspour H. & Peyvandi M. (2017). The effect of air pollution on proline and protein content and activity of nitrate reductase enzyme in Laurus nobilis L. Plants. J. Mol. Biol. Mol. Res., 7(1),99-104.
  • Sarıyıldız, T., Savacı, G. & Aljazwei H.A.A. (2017, May). Assessing the potential for zinc, copper, lead and cadmium phytoremediation with oat plants (Avena sativa Linn.). Ecology Symposium. Kayseri, Turkey.
  • Seinfeld H. (1986). Atmospheric chemistry, and physics of air pollution. Wiley. New York.
  • Seyyednejad S., Koochak H. & Vaezi J. (2013). Changes in antioxidative enzymes activity, protein content and ascorbic acid level in Prosopis juliflora exposed to industrial air pollution. J. Biol. Today's World. 10,482-492.
  • Sharma A. & Tripathi D.B. (2009). Biochemical responses in tree foliage exposed to coal fired power plant emission in seasonally dry tropical environment. Environ. Mon. Assess., 158(4), 197-212.
  • Sharma B., Sharma S. & Bhardwaj S.K., Alam N.M., Parmar Y.S. (May, 2017). Effect of pollution on total chlorophyll content in temperate species growing along national highway 5 in himachal pradesh. Proceedings of ASAR international conference. New Delhi, India.
  • Sharma S., Villamor J.G. & Verslues P.E. (2011). Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol., 157, 292-304.
  • Singleton V.L., Orthofer R. & Lamuela-Raventós R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol., 299, 152-178.
  • Sofoa A., Dichioa B., Xiloyannisa C. & Masiab A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol. Plant., 121, 58-65.
  • Szczepanska N, Kudlak B, Nedyalkova M, Simeonov V. & Namiesnik J. 2017. Application of chemometric techniques in studying of toxicity of selected commercially available products for infants and children. Environ. Monit. Assess. 189, 309.
  • Takahama U. & Oniki T. (2000). Flavonoid and some other phenolics as substrates of peroxidase: physiological significance of the redox reactions. J. Plant Res., 113, 301.
  • Tiwari S., Agrawal M. & Marshall F.M. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers. Environ. Mon. Assess., 119,15-30.
  • Tobiszewski M, Nedyalkova M., Madurga S., Pena-Pereirad F., Namieśnika J. & Simeonov V. 2018. Pre-selection and assessment of green organic solvents by clustering chemometric tools. Ecotoxicology and Environmental Safety. 147: 292-298.
  • Tripathi A.K. & Gautam M. (2007). Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol., 28(1), 127-132.
  • Velikova V., Yordanov I. & Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci., 151, 59-66.
  • Verma S. & Dubey R.S. (2003). Leads toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 645-655.
  • Wang H., Shi H. & Wang Y. (2014). Effects of Weather, Time, and Pollution Level on the Amount of Particulate Matter Deposited on Leaves of Ligustrum lucidum. Sci. World J., 2015, 1-8.
  • Witham F.H. & Blaydes D.F., Devli R.M. (1971). Experiments in plant physiology. (55-56). Van Nostrand Reinhold Company, New York.
  • Wittenberghe S.V., Alonso L., Verrelst J., Hermans I., Delegido J., Veroustraete F., Valcke R., Moreno J. & Samson R. (2013). Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ. Pollut., 173, 29-37.
  • Woo S.Y., Lee D.K. & Lee Y.K. (2007). Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica, 45(2), 293-295.
  • Yan K., Chen W., He X., Zhang G., Xu S. & Wang, L. (2010). Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ. Exp. Bot., 69,198-204.
  • Yang J., McBride J., Zhou J. & Sun Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78.
  • Yılmaz T. (2015). The effect of heavy metals (lead, zinc, copper and cadmium) on the chlorophyll content of some mosses. MSc Thesis (59 pages), Graduate School of Natural and Applied Sciences Department

Details

Primary Language English
Journal Section Articles
Authors

Nezahat TURFAN


Gamze SAVACI (Primary Author)


Temel SARIYILDIZ

Publication Date December 28, 2018
Published in Issue Year 2018, Volume 18, Issue 3

Cite

Bibtex @research article { kastorman498746, journal = {Kastamonu University Journal of Forestry Faculty}, issn = {1303-2399}, eissn = {1309-4181}, address = {}, publisher = {Kastamonu University}, year = {2018}, volume = {18}, pages = {253 - 271}, doi = {10.17475/kastorman.498746}, title = {Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey}, key = {cite}, author = {Turfan, Nezahat and Savacı, Gamze and Sarıyıldız, Temel} }
APA Turfan, N. , Savacı, G. & Sarıyıldız, T. (2018). Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey . Kastamonu University Journal of Forestry Faculty , 18 (3) , 253-271 . DOI: 10.17475/kastorman.498746
MLA Turfan, N. , Savacı, G. , Sarıyıldız, T. "Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey" . Kastamonu University Journal of Forestry Faculty 18 (2018 ): 253-271 <https://dergipark.org.tr/en/pub/kastorman/issue/41255/498746>
Chicago Turfan, N. , Savacı, G. , Sarıyıldız, T. "Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey". Kastamonu University Journal of Forestry Faculty 18 (2018 ): 253-271
RIS TY - JOUR T1 - Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey AU - Nezahat Turfan , Gamze Savacı , Temel Sarıyıldız Y1 - 2018 PY - 2018 N1 - doi: 10.17475/kastorman.498746 DO - 10.17475/kastorman.498746 T2 - Kastamonu University Journal of Forestry Faculty JF - Journal JO - JOR SP - 253 EP - 271 VL - 18 IS - 3 SN - 1303-2399-1309-4181 M3 - doi: 10.17475/kastorman.498746 UR - https://doi.org/10.17475/kastorman.498746 Y2 - 2018 ER -
EndNote %0 Kastamonu University Journal of Forestry Faculty Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey %A Nezahat Turfan , Gamze Savacı , Temel Sarıyıldız %T Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey %D 2018 %J Kastamonu University Journal of Forestry Faculty %P 1303-2399-1309-4181 %V 18 %N 3 %R doi: 10.17475/kastorman.498746 %U 10.17475/kastorman.498746
ISNAD Turfan, Nezahat , Savacı, Gamze , Sarıyıldız, Temel . "Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey". Kastamonu University Journal of Forestry Faculty 18 / 3 (December 2018): 253-271 . https://doi.org/10.17475/kastorman.498746
AMA Turfan N. , Savacı G. , Sarıyıldız T. Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey. Kastamonu University Journal of Forestry Faculty. 2018; 18(3): 253-271.
Vancouver Turfan N. , Savacı G. , Sarıyıldız T. Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey. Kastamonu University Journal of Forestry Faculty. 2018; 18(3): 253-271.
IEEE N. Turfan , G. Savacı and T. Sarıyıldız , "Effects of Iron-Steel Factory and Dense Traffic on Leaf Chemical Compounds of Six Tree Species in Turkey", Kastamonu University Journal of Forestry Faculty, vol. 18, no. 3, pp. 253-271, Dec. 2018, doi:10.17475/kastorman.498746

14178  14179       14165           14166           14167            14168