Research Article
BibTex RIS Cite

Acacia mellifera ve Acacia laeta Fidanlarinda Kurak Toprakta Diurnal Fotosistem II Fotokimyasal Verim ve Biyokütle Bölümlenmesi

Year 2019, Volume: 19 Issue: 1, 82 - 94, 27.03.2019
https://doi.org/10.17475/kastorman.543538

Abstract

Çalışmanın amacı: Çalışmada, kurak toprağın fotosistem II'nin diürnal fotokimyasal etkinliği üzerindeki etkisi ve Acaia mellifera (Mf) ve Acacia laeta (Lt) fidanlarının biyokütle bölümlenmesinin değerlendirilmesi amaçlanmıştır.
Çalışma alanı: Araştırma, Sudan'ın Kuzey Darfur Eyaletinde, Al Fashir Üniversitesi Orman ve Çevre Bilimleri Fakültesi, Çevre Bilimleri ve Doğal Kaynaklar Fakültesinde yürütülmüştür.
Materyal ve yöntemler: Her bir tür için iki aylık 30 adet fidan çalışma için seçildi. Tür başına fidanların yarısı iyice sulandı, ve diğer yarısı tam kuraklığa maruz kalmadan önce beş farklı kuraklık derecesine maruz bırakılmıştır.
Sonuçlar: Klorofil flüoresans çalışmasının sonuçları, her iki türün ölçümler boyunca fotosentez mekanizmalarını koruyabildiğini göstermiştir. Mf, kontrol fidelerinde Lt'ye kıyasla daha yüksek biyokütle üretimi gösterdi. Diğer taraftan, tekrarlanan kuraklık döngü teknikleri muhtemelen Lt’nin büyüme ve gelişmesini arttırmıştır. ΔF/Fm ve photosynthetically aktif radyasyon (PAR) arasında, ve Fv/Fm ve yaprak sıcaklığı (T) arasında kuvvetli negatif ilişki tespit edilmiştir.
Önemli vurgular: Kurak mevsimde genel olarak aralıklı sulama koşullarında A. mellifera, daha iyi bir büyüme gösterecektir, ve bu nedenle, A. laeta'ya göre yarı kurak ortamlarda canlı çit ve ağaçlandırma amacı için daha uygun olduğunu göstermiştir.

References

  • Aref, I.M. & El-Juhany, L.I. (2001). Impact of sudden water stress on the growth of eight acacia species). Alexandria Science Exchange Journal, 22 (4), 413-422.
  • Awodola, A. M. (1991). Effect of soil moisture on the growth of seedlings of Acacia albida (Del.) and Acacia seyal (Del.). Nigerian Journal of Forestry, 21(1-2), 35-37.
  • Axelsson, R. & Hanan, N.P. (2017). Patterns in woody vegetation structure across African Savannas. Biogeoscience, 14, 3239-3252.
  • Balaguer, L., Pugnaire, F.I., Martinez-Ferri, E., Armas, C., Valladares, F. & Manrique, E. (2002). Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240, 343-352.
  • Boyer, J.S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46, 233-235.
  • Chartzoulakis, K., Noitsakis, B. & Therios, I. (1993). Photosynthesis, plant growth and dry matter distribution in Kiwifruit as influenced by water deficits. Irrigation Science, 14, 1-5.
  • Chen, L. & Cheng, L. (2009). Photosystem 2 is more tolerant to high temperature in apple (Malus domastica Borkh) leaves than fruit peel. Photosynthetica, 47(1), 112-120.
  • Deans, J.D., Diagne, O., Nizinski, J., Lindley, D.K., Seck, M., Ingleby, K. & Munro, R.C. (2003). Comparative growth, biomass production, nitrogen use, and soil amelioration by nitrogen-fixing tree species in semi-arid Senegal. Forest Ecology and Management, 176, 253-264.
  • Eltayb, M.T.A. & Mohamed, A.G. (2013). Feasible grafting Acacia mellifera (Vahl) young seedlings onto young seedlings of other acacias to improve performance on gum production. Journal of Applied and Industrial Sciences, 1(2), 41-50.
  • Eshete, G. &Stahl, G. (1998). Functions for multi-phase assessment of biomass in acacia woodlands of the Rift Valley of Ethiopia. Forest Ecology and Management, 105, 79-90.
  • FAO, (2012). Adaptation to climate change in semi-arid environments: Experience and lessons from Mozambique. Environment and Natural Resource Management series, 19, FAO, Rome, Italy.
  • Faria, T, Garcia-Plazaola, J.I., Abadia, A., Cerasoli, S., Pereira, J.S. & Chaves, M.M. (1996). Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiology, 16, 115-123.
  • Filella, I., Llusia, J., Pinol, J. & Penuelas, J. (1998). Leaf gas exchange and fuorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in seven drought and high temperature conditions. Environmental and Experimental Botany, 39, 213-220.
  • Fleck, I., Hogan, K.P., Llorens, L., Abadia, A. & Aranda, X. (1998). Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiology, 18, 607-614.
  • Franco, A.C., Haag-Kerwer, A., Herzog, B., Grams, T.E.E., Ball, E., De Mattos, E.A., Scarano, F.R, Barreto, S., Gracia, M.A., Mantovani, A., & Luttge, U. (1996). The effect of light levels on daily patterns of chlorophyll fluorescence and organic acid accumulation in the tropical CAM tree Clusia hilariana. Trees, 10, 359-365.
  • Genty, B., Briantais, J-M. & Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92.
  • Gindaba, J., Rozanov, A.B. & Negash, L. (2005). Photosynthetic gas exchange, growth and biomass allocation of two eucalyptus and three indigenous tree species of Ethiopia under moist deficit. Forest Ecology and Management, 205(1), 127-138.
  • Gupta, N.K., Agarwal, S., Agarwal, V.P., Nathawat, N.S., Gupta, S. & Singh, G. (2013). Effect of short-term heat stress on growth, physiology, and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35, 1837-1842.
  • Hayward, B. (2004). The acacia tree: a sustainable resource for Africa. Oxford Forestry Institute.
  • Hopkins, W.G. & Huner, N.P.A. (2009). Introduction to Plant Physiology. 4th edition, John Wiley & Sons, Inc.
  • Hussein, S.G. (2006). Afforestation in Arid Lands with Particular reference to the Sudan. 1st ed., Khartoum University Press, Khartoum, Sudan.
  • Johnson, D.A. (1980). Improvement of perennial herbaceous plants for drought-stressed western rangelands. In: Turner, N. C. and Kramer, P. J., (eds.), Adaptation of plants to water and high temperature stress, 419-433, Wiely, New York.
  • Jones, G. (1979). Vegetation Productivity: Topics in applied geography. Longman Inc., New York, USA.
  • Karlson, M. & Ostwald, M. (2016). Remote sensing of vegetation in Sudano-Sahelian zone: A literature review from 1975 to 2014. Journal of Arid Environments, 124, 257-269.
  • Kramer, P.J. & Boyer, J.S. (1995). Water relations of plants and soils. Academic press, San Diego.
  • Lambers, H., Chapin, III F.S. & Pons, T.L. (2008). Plant physiological ecology. 2nd edition, Springer, New York, USA.
  • Li, S., Pezeshki, S.R. & Goodwin, S. (2004). Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia). Acta oecologica, 25, 17-22.
  • Lichtenthaler, H.K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148, 4-14.
  • Lina, A. & Eloisa, L. (2018). How do young cucti (seeds and seedlings) from tropical xeric environments cope with extended drought period? Journal of Arid Environments, 154, 1-17.
  • Liu, M.Z., Jiang, G.M., Li, Y.G., Gao, L.M., Niu, S.L., Cui, H.X. & Ding, L. (2003). Gas exchange, photochemical efficiency, and leaf water potential of three Salix species. Photosynthetica, 41(3), 393-398.
  • Martinazzo, E.G., Ramm, A. & Bacarin, M.A. (2012). The chlorophyll a fluorescence as an indicator of temperature stress in the leaves of Prunus persica. Braz. Journal of Plant Physiology, 24(4), 237-246.
  • Mathur, S. & Jajoo, A. (2014). Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiology and Molecular Biology of Plants, 2014, 527-531.
  • Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51 (345), 659-668.
  • Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochemica et Biophysica Acta, 1767, 414-421.
  • Ngugi, M.R., Hunt, M.A., Doley, D., Ryan, P. & Dart, P. (2004). Selection of species and provenances for low-rainfall areas: physiological responses of Eucalyptus cloeziana and Eucalyptus argophloia to seasonal conditions of subtropical Queensland. Forest Ecology and Management, 193, 141-156.
  • Nolan, R.H., Tarin, T., Rumman, R., Cleverly, J., Fairweather, K.A., Zolfaghar, S., Santini, N.S., O’Grady A.P. & Eamus D. (2018). Contrasting ecophysiology of two widespread arid zone tree species with differing access to water resources. Journal of Arid Environments, 153, 1-10.
  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Simons, A. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.
  • Othmani, A., Rizgui, M., Cherif, S., Mouelhi, M. & Melki, M. (2015). Effects of water regimes on root and shoot growth parameters and agronomic traits of Tunisian durum wheat (Triticum durum Desf.). Journal of New Sciences, 18(7), 695-702.
  • Otieno, D.O., Schmidt, M.W.T., Kinyamario, J.Y. & Tenhunen, J. (2005). Responses of Acacia tortilis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya. Journal of Arid Environments, 62, 377-400.
  • Pokhriyal, T.C., Chukiyal, S.P. & Singh, U. (1997). Effects of water stress treatments on growth parameters and nitrogenase activity in Acacia nilotica. Indian journal of plant physiology, 2(1), 72-74.
  • Shirke, P,A. & Pathre, U.V. (2003). Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 41(1): 83-89.
  • Siam, A.M.J., Radoglou, K.M., Noitsakis, B. & Smiris, P. (2008). Physiological and growth responses of three Mediterranean oak species to different water availability regimes. Journal of Arid Environments, 72, 583-592.
  • Silva, D.D., Kane, M.E. & Beeson, R.C. (2012). Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb. HortScience, 47(11), 1634-1640.
  • Taiz, L. & Zeiger, E. (2002). Plant Physiology. 3rd edition, Sinauer associates, Sunderland.
  • Tenhunen, J.D., Beyschlag, W., Lange, O.L. & Harley, P.C. (1987). Changes during summer drought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxilation efficiency, and stomatal conductance. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L. and Oechel, W.C., (ed.) Plant response to stress. 305-327, NATO ASI series G: Ecological Science Vol. 15, Berlin.
  • Tesfaye, M. & Negash, M. (2018). Cobretum-Terminalia vegetation accumulates more carbon stock in the soil than biomass along elevation ranges of dryland ecosystems in Southern Ethiopia. Journal of Arid Environments, 155, 59-64.
  • Tikkanen, M. & Aro, E. (2012). Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochimica et Biophysica Acta, 1817, 232-238. Tyree, M. T., Vargass, G., Engelbrecht, B.M. & Kursar, T. A. (2002). Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. Journal of Experimental Botany, 53(378), 2239-2247.
  • UNEP, (2007). Sudan: post conflict environmental assessment. United Nations Environment Program, Nairobi, Kenya.
  • Vilagrosa, A., Bellot, J., Vallejo, V.R. & Gill-Pelegrin, E. (2003). Cavitation, stomatal conductance, and leaf dieback of seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany, 54 (390), 2015-2024.
  • Vogt, K. (1995). Common trees and shrubs of dryland Sudan. SOS Sahel International, London, N1 0XT, UK.
  • Wen, X., Qiu, N., Lu, Q. & Lu, C. (2005). Enhanced thermotolerance of photosystem 2 in salt-adapted plants of the halophyte Artemisia anethifolia. Planta, 220, 486-497.
  • Werner, C., Correia, O. & Beyschlag, W. (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica, 20 (1), 15-23.
  • Xu, Z., Zhou, G. & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant signaling & Behavior, 5(6), 649-654.

Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil

Year 2019, Volume: 19 Issue: 1, 82 - 94, 27.03.2019
https://doi.org/10.17475/kastorman.543538

Abstract

Aim of study: The study aimed to assess the impact of drying soil on diurnal photochemical efficiency of photosystem II and biomass partitioning of the seedlings of Acaia mellifera (Mf) and Acacia laeta (Lt).
Study area: The study was conducted at the nursery of Department of Forestry & Range Sciences, Faculty of Environmental Sciences and Natural Resources, University of Al Fashir, North Darfur, Sudan.
Materials and methods: Thirty-six seedlings of two-months old per each species were selected for study. A half of seedlings per species was kept well-watered and the other was exposed to five drought cycles before exposed to continuous drying.
Main results: The results of chlorophyll fluorescence study were indicated that both species are capable to maintain sound photosynthetic machinery throughout the course of measurements. Mf manifested higher biomass production compared to Lt in control seedlings. Conversely, repeated drying cycles techniques were likely improved growth and production in Lt. Strong negative relationships were established between ΔF/Fm' and incident photosynthetically active radiation (PAR), and between Fv/Fm and leaf temperature (T).
Highlights: Under the intermittent irrigation conditions during dry season in general A. mellifera would show better growth hence greater potentials for live fence and afforestation purposes in semi-arid environments compared to A. laeta.

References

  • Aref, I.M. & El-Juhany, L.I. (2001). Impact of sudden water stress on the growth of eight acacia species). Alexandria Science Exchange Journal, 22 (4), 413-422.
  • Awodola, A. M. (1991). Effect of soil moisture on the growth of seedlings of Acacia albida (Del.) and Acacia seyal (Del.). Nigerian Journal of Forestry, 21(1-2), 35-37.
  • Axelsson, R. & Hanan, N.P. (2017). Patterns in woody vegetation structure across African Savannas. Biogeoscience, 14, 3239-3252.
  • Balaguer, L., Pugnaire, F.I., Martinez-Ferri, E., Armas, C., Valladares, F. & Manrique, E. (2002). Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240, 343-352.
  • Boyer, J.S. (1970). Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46, 233-235.
  • Chartzoulakis, K., Noitsakis, B. & Therios, I. (1993). Photosynthesis, plant growth and dry matter distribution in Kiwifruit as influenced by water deficits. Irrigation Science, 14, 1-5.
  • Chen, L. & Cheng, L. (2009). Photosystem 2 is more tolerant to high temperature in apple (Malus domastica Borkh) leaves than fruit peel. Photosynthetica, 47(1), 112-120.
  • Deans, J.D., Diagne, O., Nizinski, J., Lindley, D.K., Seck, M., Ingleby, K. & Munro, R.C. (2003). Comparative growth, biomass production, nitrogen use, and soil amelioration by nitrogen-fixing tree species in semi-arid Senegal. Forest Ecology and Management, 176, 253-264.
  • Eltayb, M.T.A. & Mohamed, A.G. (2013). Feasible grafting Acacia mellifera (Vahl) young seedlings onto young seedlings of other acacias to improve performance on gum production. Journal of Applied and Industrial Sciences, 1(2), 41-50.
  • Eshete, G. &Stahl, G. (1998). Functions for multi-phase assessment of biomass in acacia woodlands of the Rift Valley of Ethiopia. Forest Ecology and Management, 105, 79-90.
  • FAO, (2012). Adaptation to climate change in semi-arid environments: Experience and lessons from Mozambique. Environment and Natural Resource Management series, 19, FAO, Rome, Italy.
  • Faria, T, Garcia-Plazaola, J.I., Abadia, A., Cerasoli, S., Pereira, J.S. & Chaves, M.M. (1996). Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiology, 16, 115-123.
  • Filella, I., Llusia, J., Pinol, J. & Penuelas, J. (1998). Leaf gas exchange and fuorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in seven drought and high temperature conditions. Environmental and Experimental Botany, 39, 213-220.
  • Fleck, I., Hogan, K.P., Llorens, L., Abadia, A. & Aranda, X. (1998). Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiology, 18, 607-614.
  • Franco, A.C., Haag-Kerwer, A., Herzog, B., Grams, T.E.E., Ball, E., De Mattos, E.A., Scarano, F.R, Barreto, S., Gracia, M.A., Mantovani, A., & Luttge, U. (1996). The effect of light levels on daily patterns of chlorophyll fluorescence and organic acid accumulation in the tropical CAM tree Clusia hilariana. Trees, 10, 359-365.
  • Genty, B., Briantais, J-M. & Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92.
  • Gindaba, J., Rozanov, A.B. & Negash, L. (2005). Photosynthetic gas exchange, growth and biomass allocation of two eucalyptus and three indigenous tree species of Ethiopia under moist deficit. Forest Ecology and Management, 205(1), 127-138.
  • Gupta, N.K., Agarwal, S., Agarwal, V.P., Nathawat, N.S., Gupta, S. & Singh, G. (2013). Effect of short-term heat stress on growth, physiology, and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35, 1837-1842.
  • Hayward, B. (2004). The acacia tree: a sustainable resource for Africa. Oxford Forestry Institute.
  • Hopkins, W.G. & Huner, N.P.A. (2009). Introduction to Plant Physiology. 4th edition, John Wiley & Sons, Inc.
  • Hussein, S.G. (2006). Afforestation in Arid Lands with Particular reference to the Sudan. 1st ed., Khartoum University Press, Khartoum, Sudan.
  • Johnson, D.A. (1980). Improvement of perennial herbaceous plants for drought-stressed western rangelands. In: Turner, N. C. and Kramer, P. J., (eds.), Adaptation of plants to water and high temperature stress, 419-433, Wiely, New York.
  • Jones, G. (1979). Vegetation Productivity: Topics in applied geography. Longman Inc., New York, USA.
  • Karlson, M. & Ostwald, M. (2016). Remote sensing of vegetation in Sudano-Sahelian zone: A literature review from 1975 to 2014. Journal of Arid Environments, 124, 257-269.
  • Kramer, P.J. & Boyer, J.S. (1995). Water relations of plants and soils. Academic press, San Diego.
  • Lambers, H., Chapin, III F.S. & Pons, T.L. (2008). Plant physiological ecology. 2nd edition, Springer, New York, USA.
  • Li, S., Pezeshki, S.R. & Goodwin, S. (2004). Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia). Acta oecologica, 25, 17-22.
  • Lichtenthaler, H.K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148, 4-14.
  • Lina, A. & Eloisa, L. (2018). How do young cucti (seeds and seedlings) from tropical xeric environments cope with extended drought period? Journal of Arid Environments, 154, 1-17.
  • Liu, M.Z., Jiang, G.M., Li, Y.G., Gao, L.M., Niu, S.L., Cui, H.X. & Ding, L. (2003). Gas exchange, photochemical efficiency, and leaf water potential of three Salix species. Photosynthetica, 41(3), 393-398.
  • Martinazzo, E.G., Ramm, A. & Bacarin, M.A. (2012). The chlorophyll a fluorescence as an indicator of temperature stress in the leaves of Prunus persica. Braz. Journal of Plant Physiology, 24(4), 237-246.
  • Mathur, S. & Jajoo, A. (2014). Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiology and Molecular Biology of Plants, 2014, 527-531.
  • Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51 (345), 659-668.
  • Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochemica et Biophysica Acta, 1767, 414-421.
  • Ngugi, M.R., Hunt, M.A., Doley, D., Ryan, P. & Dart, P. (2004). Selection of species and provenances for low-rainfall areas: physiological responses of Eucalyptus cloeziana and Eucalyptus argophloia to seasonal conditions of subtropical Queensland. Forest Ecology and Management, 193, 141-156.
  • Nolan, R.H., Tarin, T., Rumman, R., Cleverly, J., Fairweather, K.A., Zolfaghar, S., Santini, N.S., O’Grady A.P. & Eamus D. (2018). Contrasting ecophysiology of two widespread arid zone tree species with differing access to water resources. Journal of Arid Environments, 153, 1-10.
  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Simons, A. (2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.
  • Othmani, A., Rizgui, M., Cherif, S., Mouelhi, M. & Melki, M. (2015). Effects of water regimes on root and shoot growth parameters and agronomic traits of Tunisian durum wheat (Triticum durum Desf.). Journal of New Sciences, 18(7), 695-702.
  • Otieno, D.O., Schmidt, M.W.T., Kinyamario, J.Y. & Tenhunen, J. (2005). Responses of Acacia tortilis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya. Journal of Arid Environments, 62, 377-400.
  • Pokhriyal, T.C., Chukiyal, S.P. & Singh, U. (1997). Effects of water stress treatments on growth parameters and nitrogenase activity in Acacia nilotica. Indian journal of plant physiology, 2(1), 72-74.
  • Shirke, P,A. & Pathre, U.V. (2003). Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 41(1): 83-89.
  • Siam, A.M.J., Radoglou, K.M., Noitsakis, B. & Smiris, P. (2008). Physiological and growth responses of three Mediterranean oak species to different water availability regimes. Journal of Arid Environments, 72, 583-592.
  • Silva, D.D., Kane, M.E. & Beeson, R.C. (2012). Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb. HortScience, 47(11), 1634-1640.
  • Taiz, L. & Zeiger, E. (2002). Plant Physiology. 3rd edition, Sinauer associates, Sunderland.
  • Tenhunen, J.D., Beyschlag, W., Lange, O.L. & Harley, P.C. (1987). Changes during summer drought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxilation efficiency, and stomatal conductance. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L. and Oechel, W.C., (ed.) Plant response to stress. 305-327, NATO ASI series G: Ecological Science Vol. 15, Berlin.
  • Tesfaye, M. & Negash, M. (2018). Cobretum-Terminalia vegetation accumulates more carbon stock in the soil than biomass along elevation ranges of dryland ecosystems in Southern Ethiopia. Journal of Arid Environments, 155, 59-64.
  • Tikkanen, M. & Aro, E. (2012). Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochimica et Biophysica Acta, 1817, 232-238. Tyree, M. T., Vargass, G., Engelbrecht, B.M. & Kursar, T. A. (2002). Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. Journal of Experimental Botany, 53(378), 2239-2247.
  • UNEP, (2007). Sudan: post conflict environmental assessment. United Nations Environment Program, Nairobi, Kenya.
  • Vilagrosa, A., Bellot, J., Vallejo, V.R. & Gill-Pelegrin, E. (2003). Cavitation, stomatal conductance, and leaf dieback of seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany, 54 (390), 2015-2024.
  • Vogt, K. (1995). Common trees and shrubs of dryland Sudan. SOS Sahel International, London, N1 0XT, UK.
  • Wen, X., Qiu, N., Lu, Q. & Lu, C. (2005). Enhanced thermotolerance of photosystem 2 in salt-adapted plants of the halophyte Artemisia anethifolia. Planta, 220, 486-497.
  • Werner, C., Correia, O. & Beyschlag, W. (1999). Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica, 20 (1), 15-23.
  • Xu, Z., Zhou, G. & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant signaling & Behavior, 5(6), 649-654.
There are 53 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Abubakr M.j. Sıam

İbrahim H. Abdalkreem This is me

Publication Date March 27, 2019
Published in Issue Year 2019 Volume: 19 Issue: 1

Cite

APA Sıam, A. M., & Abdalkreem, İ. H. (2019). Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil. Kastamonu University Journal of Forestry Faculty, 19(1), 82-94. https://doi.org/10.17475/kastorman.543538
AMA Sıam AM, Abdalkreem İH. Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil. Kastamonu University Journal of Forestry Faculty. March 2019;19(1):82-94. doi:10.17475/kastorman.543538
Chicago Sıam, Abubakr M.j., and İbrahim H. Abdalkreem. “Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia Mellifera and Acacia Laeta Seedlings Under Drying Soil”. Kastamonu University Journal of Forestry Faculty 19, no. 1 (March 2019): 82-94. https://doi.org/10.17475/kastorman.543538.
EndNote Sıam AM, Abdalkreem İH (March 1, 2019) Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil. Kastamonu University Journal of Forestry Faculty 19 1 82–94.
IEEE A. M. Sıam and İ. H. Abdalkreem, “Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil”, Kastamonu University Journal of Forestry Faculty, vol. 19, no. 1, pp. 82–94, 2019, doi: 10.17475/kastorman.543538.
ISNAD Sıam, Abubakr M.j. - Abdalkreem, İbrahim H. “Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia Mellifera and Acacia Laeta Seedlings Under Drying Soil”. Kastamonu University Journal of Forestry Faculty 19/1 (March 2019), 82-94. https://doi.org/10.17475/kastorman.543538.
JAMA Sıam AM, Abdalkreem İH. Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil. Kastamonu University Journal of Forestry Faculty. 2019;19:82–94.
MLA Sıam, Abubakr M.j. and İbrahim H. Abdalkreem. “Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia Mellifera and Acacia Laeta Seedlings Under Drying Soil”. Kastamonu University Journal of Forestry Faculty, vol. 19, no. 1, 2019, pp. 82-94, doi:10.17475/kastorman.543538.
Vancouver Sıam AM, Abdalkreem İH. Diurnal Photosystem II Photochemical Efficiency and Biomass Partitioning in Acacia mellifera and Acacia laeta Seedlings Under Drying Soil. Kastamonu University Journal of Forestry Faculty. 2019;19(1):82-94.

14178  14179       14165           14166           14167            14168