Research Article
BibTex RIS Cite

Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes

Year 2019, Volume: 19 Issue: 2, 225 - 234, 30.09.2019
https://doi.org/10.17475/kastorman.626277

Abstract

Aim of study: The target of this study was
measuring the changes in IFD firmness and thickness values after
constant-fatigue loading on the polyurethane (PUR) foams, with six different
densities and two different categories, produced in Trabzon/Turkey.



Material and Method: The foams were firstly exposed
to indentation force deflection (IFD) and constant-fatigue tests based on ASTM
D3574 standard. Then, the final IFD values ​​of the foams were determined after
loading and the changes in IFD values were reported.



Main results: Results indicated that
increasing the density of foam in normal category decreased the IFD loss rate
in foam firmness. However, this was vice versa for the soft foams. The support
factors of normal foams raised as density increased after constant-fatigue
loading, however; the support factors of soft foams decreased as the density
increased. All foams used in this study indicated a thickness loss lower than
10% after constant-fatigue loading and, no visual failure was detected on the
appearances of foams.



Highlights: It is important to note that when using a soft
foam in a sofa frame, it technically shows opposite behavior both in IFD loss
and support factor values under constant-fatigue loading compared to normal
foam.




Supporting Institution

TÜBİTAK

Project Number

TOVAG-215O254

Thanks

We would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) who financially supported this study with the grant number of TOVAG-215O254 and Gündoğdu Furniture Factory who provided PUR foams to be tested

References

  • ADMET. Announcement dedicated foam testing systems for ASTM D3574. (n.d.) Retrieved from http://www.admet.com/admet-announces-dedicated-foam-testing-systems-for-astm-d3574/
  • AFPF (Alliance for Flexible Polyurethane Foam) The furniture industry’s guide to today’s flexible foam. (1996). Retrieved from http://polyurethane.americanchemistry.com/Resources-and-Document-Library/3810.pdf
  • Aliha, M.R.M., Linul, E., Bahmani, A. & Marsavina, L. (2018). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading. Polymer Testing, 67, 75-83.
  • ASTM D3574 (2011). Standard test methods for flexible cellular materials—Slab, bonded, and molded urethane foams, ASTM International, West Conshohocken, PA A2LA (American Association for Laboratory Accreditation). Huntsman Polyurethanes. (n.d.) Retrieved from http://www.huntsman.com/polyurethanes/Media%20Library/a_MC1CD1F5AB7BB1738E040EBCD2B6B01F1/Customer%20Service_MC1CD1F5B56BE1738E040EBCD2B6B01F1/files/cust_serv_certs_0290.04.pdf
  • Birlik Sunger. Yoğunluk. (2013a). Retrieved from http://www.birliksunger.com/sayfa.php?kat=5&id=5
  • Birlik Sunger. Sertlik (ILD, CLD). (2013b). Retrieved from http://www.birliksunger.com/sayfa.php?kat=5&id=4
  • Cooperative Extension Furniture, Selecting Upholstered Furniture. (n.d.) Retrieved from http://www2.ca.uky.edu/hes/fcs/factshts/hf-lra.130.pdf/, 2015 (accessed 08.05.15). DDL Tested and proven, Independent Testing Laboratory. (n.d.) Retrieved from https://www.testedandproven.com/materials-testing/polyurethane-foam-testing/
  • De Mello, D., Pezzin, S.H. & Amico, S.C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708.
  • Demirel, S. & Ergun Tuna, B. (2019). Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category. Polymer Testing. 76, 146-153.
  • Eckelman, C.A. (1988a). Performance testing of furniture. Part I. underlying concepts. Forest Products Journal, 38(3), 44-48.
  • Eckelman, C.A. (1988b). Performance testing of furniture. Part II. A multipurpose universal structural performance test method. Forest Products Journal, 38(4), 13-18.
  • Gama, N., Silva, R., Carvalho, A. P. O., Ferreira, A. & Barros-Timmons, A. (2017). Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol, Polymer Testing, 62, 13-22.
  • Gok, A., Yapıcı, F., Gulsoy, S.K., Kurt, S., Altun, S., Kılınç, I. & Korkmaz, M. (2012). Determination of static fatigue performance of upholstery foams. Kastamonu University Journal of Forestry Faculty, 12(2), 285-290.
  • Hager, S.L. & Craig, T.A. (1992) Fatigue testing of high performance flexible polyurethane foam. J. Cell. Plast., 28(3), 284-303.
  • Hu, L., Tackett, B., Tor, O. & Zhang, J. (2016). Analysis of sitting forces on stationary chairs for daily activities. Ergonomics. 59(4), 556-567.
  • IDM instruments, MiniFlx CLD. (n.d.) Retrieved from http://www.idminstruments.com.au/products/miniflexcld/
  • Kumar, M. & Kaur, R. (2017). Glass fiber reinforced rigid polyurethane foam: synthesis and characterization, e-Polymers, 17(6), 517.
  • Knight, J.E. (1987). SPI study-Flexible foam in-use fatigue testing for chairs. Journal of Cellular. Plastics, 23(2), 135-157.
  • Lal, J.A. & Raman, J. (1992). Polyurethane furniture, toxic gases. Retrieved from http://ir.canterbury.ac.nz/bitstream/10092/8477/1/lal_raman_report.pdf
  • Li, A., Yang, D.D., Li, H.N., Jiang, C.L. & Liang, J.Z. (2018). Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/mg(OH)2/GF/HGB composites. Journal of Applied Polymer Science, 135(31), 1-8.
  • Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T. & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476.
  • PFA (Polyurethane Foam Association). In touch: Flexible polyurethane foam: A primer. (2016). Retrieved from http://pfa.org/intouch/new_pdf/IntouchV1.1a.pdf
  • PFA (Polyurethane Foam Association). In touch: How foam firmness affects performance. (1994). Retrieved from http://www.pfa.org/intouch/new_pdf/lr_IntouchV4.3.pdf
  • PFA (Polyurethane Foam Association). In touch: Compression modulus (support factor). (1993). http://pfa.org/intouch/new_pdf/lr_IntouchV3.1.pdf
  • Saha, M.C., Mahfuz, H., Chakravarty, U.K., Uddin, M., Kabir, Md. E. & Jeelani, S. (2005). Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Material Science and Engineering, 406, 328-336.
  • Standard Council of Canada, Insulating materials. (n.d.) Retrieved from http://palcan.scc.ca/specs/pdf/360_e.pdf
  • Testresources, ASTM D3574 Testing equipment for flexible cellular urethane foams. (n.d.) retrieved from http://www.testresources.net/applications/standards/astm/astm-d3574-testing-for-slab-bonded-and-molded-flexible-cellular-urethane-foams/ Todd, B.A., Smith, S.L. & Vongpaseuth, T. (1998). Polyurethane foams: Effects of specimen size when determining cushioning stiffness. J. Rehabil. Res. Dev., 35(2), 219-224.
  • Zwick Roel, Soft foam material tests. (n.d.) Retrieved from http://www.zwick.com.tr/tr/uygulamalar/plastikler/suengerler.html

Oturma Amaçlı Farklı Özellikteki Poliüretan Süngerlerin Sürekli- Yorulma Performansları

Year 2019, Volume: 19 Issue: 2, 225 - 234, 30.09.2019
https://doi.org/10.17475/kastorman.626277

Abstract

Çalışmanın amacı: Bu çalışmanın amacı, Trabzon / Türkiye'de üretilen altı farklı yoğunlukta
ve iki farklı kategoride olan poliüretan süngerlere uygulanan sürekli yorulma
yüklemesi sonrası IFD sertlik ve kalınlık değerlerinde meydana gelen
değişimleri incelemektir.



Materyal ve Metod: ASTM D3574 standardı baz alınarak süngerler ilk olarak IFD sertlik  testine ve sürekli-yorulma testlerine tabi
tutulmuştur. Daha sonra, süngerlerin sürekli yükleme sonrası nihai IFD sertlik
değerleri ölçülmüştür. Süngerlerin IFD sertlik değerlerindeki değişimler rapor
edilmiştir.



Sonuçlar: Normal kategorideki süngerlerin yoğunluğunun
arttırılması sünger sertliğini gösteren IFD kayıp oranını azalmasına sebep
olmuştur. Ancak, bu durum yumuşak kategorideki süngerler için tam tersidir.
Bununla birlikte, normal süngerlerin destek faktörü değerleri, sürekli-yorulma
yüklemesinden sonra yoğunluk arttıkça artmış, yumusak süngerler için yoğunluk arttıkça
azalmıştır. Bu çalışmada kullanılan tüm süngerler, sürekli-yorulma
yüklemesinden sonra, % 10'dan daha az bir kalınlık kaybı göstermiş olup,
süngerlerin görünüşlerinde görsel bir bozulma tespit edilmemiştir.



Önemli vurgular: Koltuk üretiminde yumuşak bir sünger kullanılacağı zaman, sürekli yorulma
yüklemesi altında yumuşak süngerlerin normal süngerlere göre teknik olarak
tamamen zıt bir davranış gösterdiğini bilmek önemli olacaktır.

Project Number

TOVAG-215O254

References

  • ADMET. Announcement dedicated foam testing systems for ASTM D3574. (n.d.) Retrieved from http://www.admet.com/admet-announces-dedicated-foam-testing-systems-for-astm-d3574/
  • AFPF (Alliance for Flexible Polyurethane Foam) The furniture industry’s guide to today’s flexible foam. (1996). Retrieved from http://polyurethane.americanchemistry.com/Resources-and-Document-Library/3810.pdf
  • Aliha, M.R.M., Linul, E., Bahmani, A. & Marsavina, L. (2018). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading. Polymer Testing, 67, 75-83.
  • ASTM D3574 (2011). Standard test methods for flexible cellular materials—Slab, bonded, and molded urethane foams, ASTM International, West Conshohocken, PA A2LA (American Association for Laboratory Accreditation). Huntsman Polyurethanes. (n.d.) Retrieved from http://www.huntsman.com/polyurethanes/Media%20Library/a_MC1CD1F5AB7BB1738E040EBCD2B6B01F1/Customer%20Service_MC1CD1F5B56BE1738E040EBCD2B6B01F1/files/cust_serv_certs_0290.04.pdf
  • Birlik Sunger. Yoğunluk. (2013a). Retrieved from http://www.birliksunger.com/sayfa.php?kat=5&id=5
  • Birlik Sunger. Sertlik (ILD, CLD). (2013b). Retrieved from http://www.birliksunger.com/sayfa.php?kat=5&id=4
  • Cooperative Extension Furniture, Selecting Upholstered Furniture. (n.d.) Retrieved from http://www2.ca.uky.edu/hes/fcs/factshts/hf-lra.130.pdf/, 2015 (accessed 08.05.15). DDL Tested and proven, Independent Testing Laboratory. (n.d.) Retrieved from https://www.testedandproven.com/materials-testing/polyurethane-foam-testing/
  • De Mello, D., Pezzin, S.H. & Amico, S.C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708.
  • Demirel, S. & Ergun Tuna, B. (2019). Evaluation of the cyclic fatigue performance of polyurethane foam in different density and category. Polymer Testing. 76, 146-153.
  • Eckelman, C.A. (1988a). Performance testing of furniture. Part I. underlying concepts. Forest Products Journal, 38(3), 44-48.
  • Eckelman, C.A. (1988b). Performance testing of furniture. Part II. A multipurpose universal structural performance test method. Forest Products Journal, 38(4), 13-18.
  • Gama, N., Silva, R., Carvalho, A. P. O., Ferreira, A. & Barros-Timmons, A. (2017). Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol, Polymer Testing, 62, 13-22.
  • Gok, A., Yapıcı, F., Gulsoy, S.K., Kurt, S., Altun, S., Kılınç, I. & Korkmaz, M. (2012). Determination of static fatigue performance of upholstery foams. Kastamonu University Journal of Forestry Faculty, 12(2), 285-290.
  • Hager, S.L. & Craig, T.A. (1992) Fatigue testing of high performance flexible polyurethane foam. J. Cell. Plast., 28(3), 284-303.
  • Hu, L., Tackett, B., Tor, O. & Zhang, J. (2016). Analysis of sitting forces on stationary chairs for daily activities. Ergonomics. 59(4), 556-567.
  • IDM instruments, MiniFlx CLD. (n.d.) Retrieved from http://www.idminstruments.com.au/products/miniflexcld/
  • Kumar, M. & Kaur, R. (2017). Glass fiber reinforced rigid polyurethane foam: synthesis and characterization, e-Polymers, 17(6), 517.
  • Knight, J.E. (1987). SPI study-Flexible foam in-use fatigue testing for chairs. Journal of Cellular. Plastics, 23(2), 135-157.
  • Lal, J.A. & Raman, J. (1992). Polyurethane furniture, toxic gases. Retrieved from http://ir.canterbury.ac.nz/bitstream/10092/8477/1/lal_raman_report.pdf
  • Li, A., Yang, D.D., Li, H.N., Jiang, C.L. & Liang, J.Z. (2018). Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/mg(OH)2/GF/HGB composites. Journal of Applied Polymer Science, 135(31), 1-8.
  • Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T. & Apostol, D. A. (2015). Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 58, 465-476.
  • PFA (Polyurethane Foam Association). In touch: Flexible polyurethane foam: A primer. (2016). Retrieved from http://pfa.org/intouch/new_pdf/IntouchV1.1a.pdf
  • PFA (Polyurethane Foam Association). In touch: How foam firmness affects performance. (1994). Retrieved from http://www.pfa.org/intouch/new_pdf/lr_IntouchV4.3.pdf
  • PFA (Polyurethane Foam Association). In touch: Compression modulus (support factor). (1993). http://pfa.org/intouch/new_pdf/lr_IntouchV3.1.pdf
  • Saha, M.C., Mahfuz, H., Chakravarty, U.K., Uddin, M., Kabir, Md. E. & Jeelani, S. (2005). Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Material Science and Engineering, 406, 328-336.
  • Standard Council of Canada, Insulating materials. (n.d.) Retrieved from http://palcan.scc.ca/specs/pdf/360_e.pdf
  • Testresources, ASTM D3574 Testing equipment for flexible cellular urethane foams. (n.d.) retrieved from http://www.testresources.net/applications/standards/astm/astm-d3574-testing-for-slab-bonded-and-molded-flexible-cellular-urethane-foams/ Todd, B.A., Smith, S.L. & Vongpaseuth, T. (1998). Polyurethane foams: Effects of specimen size when determining cushioning stiffness. J. Rehabil. Res. Dev., 35(2), 219-224.
  • Zwick Roel, Soft foam material tests. (n.d.) Retrieved from http://www.zwick.com.tr/tr/uygulamalar/plastikler/suengerler.html
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Samet Demirel

Busra Ergun Tuna This is me

Project Number TOVAG-215O254
Publication Date September 30, 2019
Published in Issue Year 2019 Volume: 19 Issue: 2

Cite

APA Demirel, S., & Ergun Tuna, B. (2019). Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu University Journal of Forestry Faculty, 19(2), 225-234. https://doi.org/10.17475/kastorman.626277
AMA Demirel S, Ergun Tuna B. Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu University Journal of Forestry Faculty. September 2019;19(2):225-234. doi:10.17475/kastorman.626277
Chicago Demirel, Samet, and Busra Ergun Tuna. “Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes”. Kastamonu University Journal of Forestry Faculty 19, no. 2 (September 2019): 225-34. https://doi.org/10.17475/kastorman.626277.
EndNote Demirel S, Ergun Tuna B (September 1, 2019) Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu University Journal of Forestry Faculty 19 2 225–234.
IEEE S. Demirel and B. Ergun Tuna, “Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes”, Kastamonu University Journal of Forestry Faculty, vol. 19, no. 2, pp. 225–234, 2019, doi: 10.17475/kastorman.626277.
ISNAD Demirel, Samet - Ergun Tuna, Busra. “Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes”. Kastamonu University Journal of Forestry Faculty 19/2 (September 2019), 225-234. https://doi.org/10.17475/kastorman.626277.
JAMA Demirel S, Ergun Tuna B. Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu University Journal of Forestry Faculty. 2019;19:225–234.
MLA Demirel, Samet and Busra Ergun Tuna. “Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes”. Kastamonu University Journal of Forestry Faculty, vol. 19, no. 2, 2019, pp. 225-34, doi:10.17475/kastorman.626277.
Vancouver Demirel S, Ergun Tuna B. Constant-Fatigue Performance of Different Polyurethane Foams for Sitting Purposes. Kastamonu University Journal of Forestry Faculty. 2019;19(2):225-34.

14178  14179       14165           14166           14167            14168