Research Article
BibTex RIS Cite

Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams

Year 2020, Volume: 20 Issue: 1, 15 - 24, 25.03.2020
https://doi.org/10.17475/kastorman.705805

Abstract

Aim of study: The use of composites obtained from wood and similar lignocellulosic plants has increased all over the world. Because of the rapid depletion of forest natural resources, the rational use of declining wood raw materials and to evaluate environmental alternatives has gained importance. For this purpose, many alternative lignocellulosic raw materials are used as heat insulation material by producing foams.
Materials and methods: This research compared the properties of liquefied using cotton burr after liquefaction under different acid concentrations, PEG 400-Glycerin/Cotton burr ratios, pore sizes, and PEG 400/Glycerin ratios. The cotton burrs were put in a reaction chamber at 160 °C for 2 h with the PEG 400-Glycerin/cotton burr and sulfuric acid in a glass balloon.
Main results: The maximum yield in the liquefaction of cotton burrs was found in the polyethylene glycol/glycerin ratio of 1:1. It has been found that the amount of unliquefied cotton burrs decreased with increasing of the acid concentration, reaction temperature and time.
Research highlights: Consequently, the liquefaction of cotton burrs could be seamlessly used in the production of polyurethane-type foam.

References

  • Alfani, R., Iannace, S. & Nicolais, L. (1998). Synthesis and characterization of starch-based polyurethane foams. Journal of Applied Polymer Science, 68, 739-745.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi N. (1995). Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Science Technology, 30(1), 39-47.
  • Alma, M. H. (1996a). Several acids-catalyzed phenolation of wood and its application to molding materials. Ph.D. Dissertation. Kyoto University. Japan.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1996b). The preparation and flow properties of HCl-catalyzed phenolated wood and its blends with commercial Novolak resin, Holzforshung, 50, 85-90.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1996c). Phenolation of wood using oxalic acid as a catalyst. Journal of Applied Polymer Science, 6, 675-683.
  • Alma, M. H. (1997). The use of wheat straw-phenol condensation products as molded materials. Journal of Polymer Engineering, 17, 311-322.
  • Alma, M. H. & Shiraishi, N. (1998). Preparation of polyurethane-like foams from NaOH-catalyzed liquefied wood. Holz Roh Werkstoff, 56, 245-246.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1998). Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Science Technology, 32, 297-308.
  • Alma, M. H., Kelley, S. S. (2000). Conversion of the barks of several tree species into bakelite-like thermosetting materials by their phenolysis. Journal of Polymer Engineering, 20, 365-379.
  • Alma, M. H., Bastürk, M. A., Dıgrak, M. 2002. Liquefaction of Agricultural Biomass Wastes with Polyhydric Alcohols and its Application to Polyurethane-Type Foams. 12th European Conference on Biomass for Energy, Industry and Climate Protection, Amsterdam, 1247-1250.
  • Alma, M. H., Baştürk, M. A. & Dığrak, M. (2003). New polyurethane-type rigid foams from liquified wood powders. Journal of Material Science Letters, 22, 1225-1228.
  • Alma, M. H. (2005). New polyurethane-type rigid foams from liquefied wood powders. in Polymeric Materials: New Research. B. M. Caruta ed., Nova Science Publishers Inc. New York. USA, 37-56.
  • Banik, I. & Sain, M. M. (2008). Role of refined paper fiber on structure of water blown soy polyol based polyurethane foams. Journal of Reinforced Plastics and Composites, 27(14), 1515-1524.
  • Brolund, J. & Lundmark, R. (2014). Bioenergy innovations and their determinants: A negative binominal count data analysis, Drewno, 57(192), 41-61.
  • Chen, F. & Lu, Z. (2009). Liquefaction of Wheat Straw and Preparation of Rigid Polyurethane Foam from the Liquefaction Products. Journal of Applied Polymer Science, 111, 508-516.
  • Chian, K. S. & Gan, L. H. (1998). Development of a rigid polyurethane foam from palm oil. Journal of Applied Polymer Science, 68, 509-515.
  • Chow, J. D., Chai, W. L., Yeh, C. M. & Chuang, F. S. (2008). Recycling and application characteristics of fly ash from municipal solid waste incinerator blended with polyurethane foam. Environmental Engineering Science, 25(4), 461-473.
  • Cuningham, R. L., Carr, M. E. & Bagley, E. B. (2003). Preparation and properties of rigid polyurethane foams containing modified cornstarches. Journal of Applied Polymer Science, 44, 1477-1483.
  • Dziurka, D. & Mirski, R. (2013). Lightweight boards from wood and rape straw particles. Drewno, 56(190), 19-31.
  • Ge, J. J. & Sakai, K. (1996). Decomposition of polyurethane foams derived from condensed tannin I: Hydrolysis and aminolysis of model urethanes. Mokuzai Gakkaishi, 42, 776-781.
  • Ge, J. J. & Sakai, K. (1998). Decomposition of polyurethane foams derived from condensed tannin II: Hydrolysis and aminolysis of polyurethane foams. Journal of Wood Science, 44, 103-105.
  • Ge, J. J., Zhong, W., Guo, Z. R., Li, W. J. & Sakai, K. (2000). Biodegradable polyurethane materials from bark and starch I: Highly resilient foams. Journal of Applied Polymer Science, 77, 2575-2580.
  • Hasselgren, K. (1998). Use of municipal wastewater in short rotation energy forestry-full scale application. in: Proceedings of the International Conference Biomass for Energy and Industry, Wurzburg, Germany, 835-838.
  • Hirose, S., Yano, S., Hatakeyama, T. & Hatakeyama, H. (1989). Heat resistant polyurethanes from solvolysis lignin. Lignin: Properties and materials. in: American Chemical Society Symposium Series. W. G. Glasser and S. Sarkanen (eds.). Springer Science. New York, 397, 383-389.
  • Huang, X. Y., Qi, J. Q., Hoop, C. F., Xie, J. L. & Chen, Y. Z. (2017). Biobased Polyurethane Foam Insulation from Microwave Liquefaction of Woody Underbrush. Bioresources, 12(4), 8160-8179.
  • Kennedy, J. F., Phillips, G. O. & Williams, P. A. (1993). Cellulosics: Chemical, Biochemical, and Material Aspects. Ellis Horwood. New York.
  • Kurimoto, Y., Doi, S. & Tamura, Y. (1999). Species effects on wood liquefaction in polyhydric alcohols. Holzforschung, 53, 617-622.
  • Meikleham, N. E. & Pizzi, A. (1994). Acid and alkali-catalyzed tannin-based rigid foams. Journal of Applied Polymer Science, 53, 1547-1556.
  • Rowell, R. M., Shultz, T. P. & Narayan, R. (1992). Emerging technologies for materials and chemicals from biomass. American Chemical Society, 476.
  • Sarkanen, K. V. & Ludwig, C. H. (1971). Lignins: Occurrence, Formation, Structure, and Reactions. Willey-Interscience. New York, 458.
  • Shiraishi, N., Hiromu, K. & Norimoto, M. (1993). Plasticization of Wood and its Application. Elsevier Applied Science. London.
  • Shiraishi, N., Onodera, S., Ohtani, M. & Masumoto, T. (1985). Dissolution of etherified and etherified wood into polyhydric alcohols or bisphenol and their application in preparing wooden polymeric materials. Mokuzai Gakkaishi, 31(5), 418-420.
  • Stolarski, M. J., Krzyzaniak, M., Waliszewska B., Szczukowski S., Tworkowski, J. & Zborowska, M. (2013). Lignocellulosic biomass derived from agricultural land as industrial and energy feedstock. Drewno, 56(189), 5-23.
  • Timothy, G. R. & Glasser, W. G. (1984). Engineering plastics from lignin. IV: Effect of crosslink density on polyurethane film properties-variation in NCO: OH Ratio. Holzforshung, 38, 191-199.
  • Yan, Y., Pang, H., Yang, X., Zhang, R. & Liao, B. (2008). Preparation and characterization of water blown polyurethane foams from liquefied cornstalk polyol. Journal of Applied Polymer Science, 110, 1099-1111.
  • Zhang, H., Ding, F., Luo, C., Xiong, L. & Chen, X. (2012). Liquefaction and Characterization of Acid Hydrolysis Residue of Corncob in Polyhydric Alcohols. Industrial Crops and Products, 39, 47-51.

Poliüretan Tipi İzolasyon Köpükleri İçin Pamuk Kozalarının (Gossypium hirsutum L.) Sıvılaştırma Parametrelerinin Optimizasyonu

Year 2020, Volume: 20 Issue: 1, 15 - 24, 25.03.2020
https://doi.org/10.17475/kastorman.705805

Abstract

Çalışmanın amacı: Odun ve benzeri lignoselülozik bitkilerden elde edilen kompozitlerin kullanımı tüm Dünya’da artmıştır. Orman doğal kaynaklarının hızla tükenmesi nedeniyle, azalan odun hammaddelerinin rasyonel kullanımı ve çevresel alternatiflerin değerlendirilmesi önem kazanmıştır. Bu amaçla, birçok alternatif lignoselülozik hammaddeden köpük üretilerek ısı yalıtım malzemesi olarak kullanılır.
Materyal ve yöntem: Bu araştırmada, pamuk kozaları farklı asit konsantrasyonları, PEG 400-Gliserin/Pamuk koza oranları, gözenek boyutları ve PEG 400/Gliserin oranlarında sıvılaştırılarak sıvılaşmanın özellikleri karşılaştırılmıştır. Pamuk kozaları, bir cam balon içerisinde PEG 400-Gliserin/pamuk kozası ve sülfürik asit ile 2 saat boyunca 160 °C sıcaklıkta bir reaksiyona tabi tutulmuştur.
Temel sonuçlar: Pamuk kozalarının sıvılaştırılmasındaki en iyi sonuç, polietilen glikol/gliserin (1: 1 oranı) ile belirlenmiştir. Asit konsantrasyonunun, sıcaklığın ve zamanın arttırılması ile sıvılaştırılmamış pamuk kozalarının miktarında bir düşüş olduğu tespit edilmiştir.
Araştırma vurguları: Sonuç olarak, pamuk kozalarının sıvılaştırılması, poliüretan tipi köpük üretiminde kullanılabilir olmasının uygun olduğu kanaatine varılmıştır.

References

  • Alfani, R., Iannace, S. & Nicolais, L. (1998). Synthesis and characterization of starch-based polyurethane foams. Journal of Applied Polymer Science, 68, 739-745.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi N. (1995). Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Science Technology, 30(1), 39-47.
  • Alma, M. H. (1996a). Several acids-catalyzed phenolation of wood and its application to molding materials. Ph.D. Dissertation. Kyoto University. Japan.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1996b). The preparation and flow properties of HCl-catalyzed phenolated wood and its blends with commercial Novolak resin, Holzforshung, 50, 85-90.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1996c). Phenolation of wood using oxalic acid as a catalyst. Journal of Applied Polymer Science, 6, 675-683.
  • Alma, M. H. (1997). The use of wheat straw-phenol condensation products as molded materials. Journal of Polymer Engineering, 17, 311-322.
  • Alma, M. H. & Shiraishi, N. (1998). Preparation of polyurethane-like foams from NaOH-catalyzed liquefied wood. Holz Roh Werkstoff, 56, 245-246.
  • Alma, M. H., Yoshioka, M., Yao, Y. & Shiraishi, N. (1998). Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Science Technology, 32, 297-308.
  • Alma, M. H., Kelley, S. S. (2000). Conversion of the barks of several tree species into bakelite-like thermosetting materials by their phenolysis. Journal of Polymer Engineering, 20, 365-379.
  • Alma, M. H., Bastürk, M. A., Dıgrak, M. 2002. Liquefaction of Agricultural Biomass Wastes with Polyhydric Alcohols and its Application to Polyurethane-Type Foams. 12th European Conference on Biomass for Energy, Industry and Climate Protection, Amsterdam, 1247-1250.
  • Alma, M. H., Baştürk, M. A. & Dığrak, M. (2003). New polyurethane-type rigid foams from liquified wood powders. Journal of Material Science Letters, 22, 1225-1228.
  • Alma, M. H. (2005). New polyurethane-type rigid foams from liquefied wood powders. in Polymeric Materials: New Research. B. M. Caruta ed., Nova Science Publishers Inc. New York. USA, 37-56.
  • Banik, I. & Sain, M. M. (2008). Role of refined paper fiber on structure of water blown soy polyol based polyurethane foams. Journal of Reinforced Plastics and Composites, 27(14), 1515-1524.
  • Brolund, J. & Lundmark, R. (2014). Bioenergy innovations and their determinants: A negative binominal count data analysis, Drewno, 57(192), 41-61.
  • Chen, F. & Lu, Z. (2009). Liquefaction of Wheat Straw and Preparation of Rigid Polyurethane Foam from the Liquefaction Products. Journal of Applied Polymer Science, 111, 508-516.
  • Chian, K. S. & Gan, L. H. (1998). Development of a rigid polyurethane foam from palm oil. Journal of Applied Polymer Science, 68, 509-515.
  • Chow, J. D., Chai, W. L., Yeh, C. M. & Chuang, F. S. (2008). Recycling and application characteristics of fly ash from municipal solid waste incinerator blended with polyurethane foam. Environmental Engineering Science, 25(4), 461-473.
  • Cuningham, R. L., Carr, M. E. & Bagley, E. B. (2003). Preparation and properties of rigid polyurethane foams containing modified cornstarches. Journal of Applied Polymer Science, 44, 1477-1483.
  • Dziurka, D. & Mirski, R. (2013). Lightweight boards from wood and rape straw particles. Drewno, 56(190), 19-31.
  • Ge, J. J. & Sakai, K. (1996). Decomposition of polyurethane foams derived from condensed tannin I: Hydrolysis and aminolysis of model urethanes. Mokuzai Gakkaishi, 42, 776-781.
  • Ge, J. J. & Sakai, K. (1998). Decomposition of polyurethane foams derived from condensed tannin II: Hydrolysis and aminolysis of polyurethane foams. Journal of Wood Science, 44, 103-105.
  • Ge, J. J., Zhong, W., Guo, Z. R., Li, W. J. & Sakai, K. (2000). Biodegradable polyurethane materials from bark and starch I: Highly resilient foams. Journal of Applied Polymer Science, 77, 2575-2580.
  • Hasselgren, K. (1998). Use of municipal wastewater in short rotation energy forestry-full scale application. in: Proceedings of the International Conference Biomass for Energy and Industry, Wurzburg, Germany, 835-838.
  • Hirose, S., Yano, S., Hatakeyama, T. & Hatakeyama, H. (1989). Heat resistant polyurethanes from solvolysis lignin. Lignin: Properties and materials. in: American Chemical Society Symposium Series. W. G. Glasser and S. Sarkanen (eds.). Springer Science. New York, 397, 383-389.
  • Huang, X. Y., Qi, J. Q., Hoop, C. F., Xie, J. L. & Chen, Y. Z. (2017). Biobased Polyurethane Foam Insulation from Microwave Liquefaction of Woody Underbrush. Bioresources, 12(4), 8160-8179.
  • Kennedy, J. F., Phillips, G. O. & Williams, P. A. (1993). Cellulosics: Chemical, Biochemical, and Material Aspects. Ellis Horwood. New York.
  • Kurimoto, Y., Doi, S. & Tamura, Y. (1999). Species effects on wood liquefaction in polyhydric alcohols. Holzforschung, 53, 617-622.
  • Meikleham, N. E. & Pizzi, A. (1994). Acid and alkali-catalyzed tannin-based rigid foams. Journal of Applied Polymer Science, 53, 1547-1556.
  • Rowell, R. M., Shultz, T. P. & Narayan, R. (1992). Emerging technologies for materials and chemicals from biomass. American Chemical Society, 476.
  • Sarkanen, K. V. & Ludwig, C. H. (1971). Lignins: Occurrence, Formation, Structure, and Reactions. Willey-Interscience. New York, 458.
  • Shiraishi, N., Hiromu, K. & Norimoto, M. (1993). Plasticization of Wood and its Application. Elsevier Applied Science. London.
  • Shiraishi, N., Onodera, S., Ohtani, M. & Masumoto, T. (1985). Dissolution of etherified and etherified wood into polyhydric alcohols or bisphenol and their application in preparing wooden polymeric materials. Mokuzai Gakkaishi, 31(5), 418-420.
  • Stolarski, M. J., Krzyzaniak, M., Waliszewska B., Szczukowski S., Tworkowski, J. & Zborowska, M. (2013). Lignocellulosic biomass derived from agricultural land as industrial and energy feedstock. Drewno, 56(189), 5-23.
  • Timothy, G. R. & Glasser, W. G. (1984). Engineering plastics from lignin. IV: Effect of crosslink density on polyurethane film properties-variation in NCO: OH Ratio. Holzforshung, 38, 191-199.
  • Yan, Y., Pang, H., Yang, X., Zhang, R. & Liao, B. (2008). Preparation and characterization of water blown polyurethane foams from liquefied cornstalk polyol. Journal of Applied Polymer Science, 110, 1099-1111.
  • Zhang, H., Ding, F., Luo, C., Xiong, L. & Chen, X. (2012). Liquefaction and Characterization of Acid Hydrolysis Residue of Corncob in Polyhydric Alcohols. Industrial Crops and Products, 39, 47-51.
There are 36 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Muhammed Said Fidan This is me

Murat Ertaş This is me

Publication Date March 25, 2020
Published in Issue Year 2020 Volume: 20 Issue: 1

Cite

APA Fidan, M. S., & Ertaş, M. (2020). Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams. Kastamonu University Journal of Forestry Faculty, 20(1), 15-24. https://doi.org/10.17475/kastorman.705805
AMA Fidan MS, Ertaş M. Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams. Kastamonu University Journal of Forestry Faculty. March 2020;20(1):15-24. doi:10.17475/kastorman.705805
Chicago Fidan, Muhammed Said, and Murat Ertaş. “Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium Hirsutum L.) for Polyurethane-Type Isolation Foams”. Kastamonu University Journal of Forestry Faculty 20, no. 1 (March 2020): 15-24. https://doi.org/10.17475/kastorman.705805.
EndNote Fidan MS, Ertaş M (March 1, 2020) Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams. Kastamonu University Journal of Forestry Faculty 20 1 15–24.
IEEE M. S. Fidan and M. Ertaş, “Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams”, Kastamonu University Journal of Forestry Faculty, vol. 20, no. 1, pp. 15–24, 2020, doi: 10.17475/kastorman.705805.
ISNAD Fidan, Muhammed Said - Ertaş, Murat. “Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium Hirsutum L.) for Polyurethane-Type Isolation Foams”. Kastamonu University Journal of Forestry Faculty 20/1 (March 2020), 15-24. https://doi.org/10.17475/kastorman.705805.
JAMA Fidan MS, Ertaş M. Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams. Kastamonu University Journal of Forestry Faculty. 2020;20:15–24.
MLA Fidan, Muhammed Said and Murat Ertaş. “Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium Hirsutum L.) for Polyurethane-Type Isolation Foams”. Kastamonu University Journal of Forestry Faculty, vol. 20, no. 1, 2020, pp. 15-24, doi:10.17475/kastorman.705805.
Vancouver Fidan MS, Ertaş M. Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams. Kastamonu University Journal of Forestry Faculty. 2020;20(1):15-24.

14178  14179       14165           14166           14167            14168