Research Article
BibTex RIS Cite

Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates

Year 2020, Volume: 20 Issue: 3, 285 - 294, 30.12.2020
https://doi.org/10.17475/kastorman.849459

Abstract

Aim of study: The aim of this study was to analyze the use of benzophenone tetracarboxylic di methacrylates material in wood modification process and the changes in poplar wood.
Material and methods: Poplar wood (Populus euramericana) was impregnated with the hydroxyethyl (or glycidyl) methacrylate esters of 3,3,4,4-benzophenone tetracarboxylic dianhydride. The liquid esters were obtained by reaction of BTDA with hydroxy ethyl (BTD-H) (or glycidyl, BTD-G) methacrylate. The wood-BTD-H (and BTD-G) interaction was confirmed by the characteristic signals in Fourier-transform infrared (FT-IR) spectroscopy. The decay resistance and physical behaviour of the modified wood was investigated.
Main results: The BDTA-H samples displayed less colour change than the BDTA-G samples. Before decay testing, mini-block samples were leached according to the European Committee for Standardization (EN 84 1997) standard, then control and modified samples were subjected to white-rot fungus (Trametes versicolor). Modification with BTD-G yielded a high improvement in decay resistance (68-72%).
Highlights: In the esterification of the chemical, it is benefited only from the sun's rays without the need for high temperature and pressure.

Supporting Institution

Kapadokya University Research Funds (#KÜN.2018-BAGP-001)

References

  • Atai, M., Nekoomanesh, M., Hashemi. S.A. & Yeganeh. H. (2002). Synthesis and characterization of BTDA-based dimethacrylate dental adhesive monomer and its interaction with Ca2+ ions. Journal of Applied Polymer Science, 86(13), 3246-3249.
  • AWPA E4. (2003). Standard method of testıng water repellency of pressure treated wood. Am Wood Prot Assoc. Annual Book of AWPA Standards, AWPA, Birmingham
  • Can, A., Palanti S, Sivrikaya, H., Hazer, B. & Stefani, F. (2019). Physical, biological and chemical characterisation of wood treated with silver nanoparticles. Cellulose, 26(8), 5075-5084.
  • Can, A. & Sivrikaya, H. (2019). Surface characterization of wood treated with boron compounds combined with water repellents. Color Research and Application, 44(3), 462-472.
  • Chan, L.L. & Lau, P.W.K. (1994). Urea formaldehyde and Melamine formaldehyde resin. In wet Strength Resin and Their Applications. In: Chan L.L., End.; TAPPI Press. TAPPI Press, Atlanta.
  • Colom, X. & Carrillo, F. (2002). Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. European Polymer Journal, 38(11), 2225-2230.
  • Devi, R.R., Ali, I. & Maji, T.K. (2003). Chemical modification of rubber wood with styrene in combination with a crosslinker: Effect on dimensional stability and strength property. Bioresource Technology, 88(3), 185-188.
  • Devi, R.R. & Maji, T.K. (2002). Studies of properties of rubber wood with impregnation of polymer. Bulletin of Materials Science, 25, 527–531.
  • Devi, R.R. & Maji, T.K. (2007). Effect of glycidyl methacrylate on the physical properties of wood–polymer composites. Polymer Composite, 28(1), 1-5.
  • EN 84. (1997). Wood preservatives. Accelerated ageing of treated wood prior to biological testing. Leaching procedure. European Committee for Standardization, Brussels.
  • Espy, H.H. (1995). The mechanism of wet-strength development in paper: a review. USA: Tappi J. URL 1. https://ec.europa.eu/eurostat/data/database accessed: 01.02.2020.
  • Hill, C.A.S. (2006). Wood Modification: Chemical, Thermal and Other Processes. Chichester, UK: John Wiley & Sons.
  • Homan, W.J. & Jorissen, A.J. (2004). Wood modification developments. Heron, 49(4), 360-369.
  • Hon, D.N.S. (1996). Chemical modification of lignocellulosic materials. New York: Marcel Dekker.
  • Hong, K.H. & Sun, G. (2011). Photoactive antibacterial cotton fabrics treated by 3,3′,4,4′-benzophenonetetracarboxylicdianhydride. Carbohydrate Polymers, 84(3), 1027-1032.
  • Hou, A. & Sun, G. (2013). Multifunctional finishing of cotton fabrics with 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride: reaction mechanism. Carbohydrate Polymers, 95(2), 768-772.
  • Ibach, R.E. & Rowell, R.M. (2012). Handbook of Wood Chemistry and Wood Composites. Boca Raton: CRC Press.
  • Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., Hitz, E., Luo, W. & Hu, L. (2018). Wood-Based Nanotechnologies toward Sustainability. Advanced Materials, 30(1), 1-39, 1703453.
  • Kilic, A. & Niemz, P. (2012). Extractives in some tropical woods. European Journal of Wood and Wood Products., 70(1-3), 79-83.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438–5466.
  • Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48, 3713–3729.
  • Kwon, J.H., Hill, C.A.S., Ormondroyd, G.A. & Karim, S. (2007). Changes in the cell wall volume of a number of wood species due to reaction with acetic anhydride. Holzforschung, 61, 138–142.
  • Miyagawa, H., Mohanty, A. K., Burgueño, R., Drzal, L. T., & Misra, M. (2007). Novel biobased resins from blends of functional soybean oil and unsaturated polyester resin. Journal of Polymer Science Part B: Polymer Physics, 45, 698-704.
  • Nelson, M.L. & O'Connor, R.T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8(3), 1325-1341.
  • Petersen, K., Nielsen, P.V. & Olsen, M.B. (2001). Physical and mechanical properties of biobased materials, starch, polylactate and polyhydroxybutyrate. Starch-Stärke, 53(8), 356-361.
  • Pirayesh, H. & Khazaeian, A. (2012). Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B: Engineering, 43(3), 1475-1479.
  • Qi, H., Huang, Y., Ji, B., Sun, G., Qing, F. L., Hu, C., & Yan, K. (2016). Anti-crease finishing of cotton fabrics based on crosslinking of cellulose with acryloyl malic acid. Carbohydrate Polymers, 135, 86–93.
  • Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering: R: Reports, 72, 29–47.
  • Rowell, R.M. (2006). Chemical modification of wood: A short review. Wood Material Science & Engineering, 1(1), 29-33.
  • Rowell, R.M. (2012). Handbook of wood chemistry and wood composites. Boca Raton: CRC Press. https://doi.org/10.1080/10236660802666160
  • Şolpan, D. & Güven, O. (1998). Comparison of the dimensional stabilities of oak and cedar wood preserved by in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate. Die Angewandte Makromolekulare Chemie, 259(1), 33-37.
  • Suttie, E., Hill, C., Sandin, G., Kutnar, A., Ganne-Chédeville, C., Lowres, F. & Dias, A.C. (2017). Environmental assessment of bio-based building materials Jones D, Brischke C (Eds.), Perform Bio-Based Build Mater. Duxford, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100982-6.00009-4
  • Taherzadeh, M.J. & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621-1651.
  • Weiss, M., Haufe, J., Carus, M., Brandão, M. & Bringezu, S., Hermann, B., Patel, M.K. (2012). A review of the environmental impacts of biobased materials. Journal of Industrial Ecology, 16, 169-181.
  • Xie, Y., Krause, A., Mai, C., Militz, H., Richter, K., Urban, K., & Evans, P. D. (2005). Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polymer Degradation and Stability, 89, 189–199.
  • Yang, C.Q. (1993). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. I. Identification of the cyclic anhydride intermediate. Journal of Polymer Science Part A Polymer Chemistry, 31(5), 1187-1193.
  • Yang, C.Q. & Wang, X. (1996a). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry, 34, 1573–1580.
  • Yang, C.Q. & Wang, X. (1996b). Formation of Cyclic Anhydride Intermediates and Esterification of Cotton Cellulose by Multifunctional Carboxylic Acids: An Infrared Spectroscopy Study. Textile Research Journal, 66, 595–603.
  • Yang, C.Q. & Wang, X. (1997). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. III. Molecular weight of a crosslinking agent. Journal of Polymer Science Part A: Polymer Chemistry, 35, 557–564.
  • Yang, C.Q., Wang, X. & Kang, I.S. (1997). Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid. Textile Research Journal, 67(5), 334-342. Zoralioglu, T. & Koçar, S. (1996). Mechanization techniques for poplar development in Turkey. Biomass Bioenergy, 10(5-6), 261-265.

Kavak Odununun Benzofenon Tetrakarboksilik Di Metakrilatlarla Kimyasal Modifikasyonu

Year 2020, Volume: 20 Issue: 3, 285 - 294, 30.12.2020
https://doi.org/10.17475/kastorman.849459

Abstract

Çalışmanın amacı: Bu çalışmanın amacı, odun modifikasyon işleminde benzophenone tetracarboxylic di methacrylates maddesinin kullanımı ve kavak odununda meydana getirdiği değişimlerin incelenmesidir.
Materyal ve yöntem: Kavak ağacı (Populus euramericana), 3,3,4,4-benzofenon tetrakarboksilik dianhidrit hidroksi etil (veya glisidil) metakrilat esterleri ile emprenye edilmiştir. Sıvı esterler, BTDA'nın hidroksi etil (veya glisidil) metakrilat ile reaksiyonu sonucu elde edilmiştir. Wood-BTD-H (ve BTD-G) etkileşimi, Fourier dönüşümü kızılötesi (FT-IR) spektroskopisindeki karakteristik sinyallerle incelendi. Modifiye edilmiş ahşabın mantar testi ve fiziksel özellikleri incelenmiştir.
Sonuçlar: BDTA-H örnekleri, BDTA-G örneklerinden daha az renk değişikliği göstermiştir. Çürüme testinden önce, mini blok numuneleri Avrupa Standardizasyon Komitesi (EN 84, 1997) standardına göre yıkanma işlemine tabi tutulmuştur. Daha sonra kontrol ve modifiye edilmiş numuneler beyaz çürüklük mantarına (Trametes versicolor) maruz bırakılmıştır. BTD-G ile modifikasyon işlemi uygulanmış örneklerde yüksek oranda çürüklük direnci (% 68-72) sağlanmıştır.
Önemli vurgular: Kimyasal maddenin polimerizasyonunda yüksek sıcaklık va basınca ihtiyaç duyulmadan sadece güneş ışınlarından yararlanılmıştır.

References

  • Atai, M., Nekoomanesh, M., Hashemi. S.A. & Yeganeh. H. (2002). Synthesis and characterization of BTDA-based dimethacrylate dental adhesive monomer and its interaction with Ca2+ ions. Journal of Applied Polymer Science, 86(13), 3246-3249.
  • AWPA E4. (2003). Standard method of testıng water repellency of pressure treated wood. Am Wood Prot Assoc. Annual Book of AWPA Standards, AWPA, Birmingham
  • Can, A., Palanti S, Sivrikaya, H., Hazer, B. & Stefani, F. (2019). Physical, biological and chemical characterisation of wood treated with silver nanoparticles. Cellulose, 26(8), 5075-5084.
  • Can, A. & Sivrikaya, H. (2019). Surface characterization of wood treated with boron compounds combined with water repellents. Color Research and Application, 44(3), 462-472.
  • Chan, L.L. & Lau, P.W.K. (1994). Urea formaldehyde and Melamine formaldehyde resin. In wet Strength Resin and Their Applications. In: Chan L.L., End.; TAPPI Press. TAPPI Press, Atlanta.
  • Colom, X. & Carrillo, F. (2002). Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. European Polymer Journal, 38(11), 2225-2230.
  • Devi, R.R., Ali, I. & Maji, T.K. (2003). Chemical modification of rubber wood with styrene in combination with a crosslinker: Effect on dimensional stability and strength property. Bioresource Technology, 88(3), 185-188.
  • Devi, R.R. & Maji, T.K. (2002). Studies of properties of rubber wood with impregnation of polymer. Bulletin of Materials Science, 25, 527–531.
  • Devi, R.R. & Maji, T.K. (2007). Effect of glycidyl methacrylate on the physical properties of wood–polymer composites. Polymer Composite, 28(1), 1-5.
  • EN 84. (1997). Wood preservatives. Accelerated ageing of treated wood prior to biological testing. Leaching procedure. European Committee for Standardization, Brussels.
  • Espy, H.H. (1995). The mechanism of wet-strength development in paper: a review. USA: Tappi J. URL 1. https://ec.europa.eu/eurostat/data/database accessed: 01.02.2020.
  • Hill, C.A.S. (2006). Wood Modification: Chemical, Thermal and Other Processes. Chichester, UK: John Wiley & Sons.
  • Homan, W.J. & Jorissen, A.J. (2004). Wood modification developments. Heron, 49(4), 360-369.
  • Hon, D.N.S. (1996). Chemical modification of lignocellulosic materials. New York: Marcel Dekker.
  • Hong, K.H. & Sun, G. (2011). Photoactive antibacterial cotton fabrics treated by 3,3′,4,4′-benzophenonetetracarboxylicdianhydride. Carbohydrate Polymers, 84(3), 1027-1032.
  • Hou, A. & Sun, G. (2013). Multifunctional finishing of cotton fabrics with 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride: reaction mechanism. Carbohydrate Polymers, 95(2), 768-772.
  • Ibach, R.E. & Rowell, R.M. (2012). Handbook of Wood Chemistry and Wood Composites. Boca Raton: CRC Press.
  • Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., Hitz, E., Luo, W. & Hu, L. (2018). Wood-Based Nanotechnologies toward Sustainability. Advanced Materials, 30(1), 1-39, 1703453.
  • Kilic, A. & Niemz, P. (2012). Extractives in some tropical woods. European Journal of Wood and Wood Products., 70(1-3), 79-83.
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438–5466.
  • Kumar, P., Barrett, D.M., Delwiche, M.J. & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48, 3713–3729.
  • Kwon, J.H., Hill, C.A.S., Ormondroyd, G.A. & Karim, S. (2007). Changes in the cell wall volume of a number of wood species due to reaction with acetic anhydride. Holzforschung, 61, 138–142.
  • Miyagawa, H., Mohanty, A. K., Burgueño, R., Drzal, L. T., & Misra, M. (2007). Novel biobased resins from blends of functional soybean oil and unsaturated polyester resin. Journal of Polymer Science Part B: Polymer Physics, 45, 698-704.
  • Nelson, M.L. & O'Connor, R.T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science, 8(3), 1325-1341.
  • Petersen, K., Nielsen, P.V. & Olsen, M.B. (2001). Physical and mechanical properties of biobased materials, starch, polylactate and polyhydroxybutyrate. Starch-Stärke, 53(8), 356-361.
  • Pirayesh, H. & Khazaeian, A. (2012). Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B: Engineering, 43(3), 1475-1479.
  • Qi, H., Huang, Y., Ji, B., Sun, G., Qing, F. L., Hu, C., & Yan, K. (2016). Anti-crease finishing of cotton fabrics based on crosslinking of cellulose with acryloyl malic acid. Carbohydrate Polymers, 135, 86–93.
  • Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering: R: Reports, 72, 29–47.
  • Rowell, R.M. (2006). Chemical modification of wood: A short review. Wood Material Science & Engineering, 1(1), 29-33.
  • Rowell, R.M. (2012). Handbook of wood chemistry and wood composites. Boca Raton: CRC Press. https://doi.org/10.1080/10236660802666160
  • Şolpan, D. & Güven, O. (1998). Comparison of the dimensional stabilities of oak and cedar wood preserved by in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate. Die Angewandte Makromolekulare Chemie, 259(1), 33-37.
  • Suttie, E., Hill, C., Sandin, G., Kutnar, A., Ganne-Chédeville, C., Lowres, F. & Dias, A.C. (2017). Environmental assessment of bio-based building materials Jones D, Brischke C (Eds.), Perform Bio-Based Build Mater. Duxford, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100982-6.00009-4
  • Taherzadeh, M.J. & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621-1651.
  • Weiss, M., Haufe, J., Carus, M., Brandão, M. & Bringezu, S., Hermann, B., Patel, M.K. (2012). A review of the environmental impacts of biobased materials. Journal of Industrial Ecology, 16, 169-181.
  • Xie, Y., Krause, A., Mai, C., Militz, H., Richter, K., Urban, K., & Evans, P. D. (2005). Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polymer Degradation and Stability, 89, 189–199.
  • Yang, C.Q. (1993). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. I. Identification of the cyclic anhydride intermediate. Journal of Polymer Science Part A Polymer Chemistry, 31(5), 1187-1193.
  • Yang, C.Q. & Wang, X. (1996a). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry, 34, 1573–1580.
  • Yang, C.Q. & Wang, X. (1996b). Formation of Cyclic Anhydride Intermediates and Esterification of Cotton Cellulose by Multifunctional Carboxylic Acids: An Infrared Spectroscopy Study. Textile Research Journal, 66, 595–603.
  • Yang, C.Q. & Wang, X. (1997). Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. III. Molecular weight of a crosslinking agent. Journal of Polymer Science Part A: Polymer Chemistry, 35, 557–564.
  • Yang, C.Q., Wang, X. & Kang, I.S. (1997). Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid. Textile Research Journal, 67(5), 334-342. Zoralioglu, T. & Koçar, S. (1996). Mechanization techniques for poplar development in Turkey. Biomass Bioenergy, 10(5-6), 261-265.
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ahmet Can This is me

Baki Hazer This is me

Hüseyin Sivrikaya This is me

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 20 Issue: 3

Cite

APA Can, A., Hazer, B., & Sivrikaya, H. (2020). Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Kastamonu University Journal of Forestry Faculty, 20(3), 285-294. https://doi.org/10.17475/kastorman.849459
AMA Can A, Hazer B, Sivrikaya H. Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Kastamonu University Journal of Forestry Faculty. December 2020;20(3):285-294. doi:10.17475/kastorman.849459
Chicago Can, Ahmet, Baki Hazer, and Hüseyin Sivrikaya. “Chemical Modification of Poplar Wood With Benzophenone Tetracarboxylic Di Methacrylates”. Kastamonu University Journal of Forestry Faculty 20, no. 3 (December 2020): 285-94. https://doi.org/10.17475/kastorman.849459.
EndNote Can A, Hazer B, Sivrikaya H (December 1, 2020) Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Kastamonu University Journal of Forestry Faculty 20 3 285–294.
IEEE A. Can, B. Hazer, and H. Sivrikaya, “Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates”, Kastamonu University Journal of Forestry Faculty, vol. 20, no. 3, pp. 285–294, 2020, doi: 10.17475/kastorman.849459.
ISNAD Can, Ahmet et al. “Chemical Modification of Poplar Wood With Benzophenone Tetracarboxylic Di Methacrylates”. Kastamonu University Journal of Forestry Faculty 20/3 (December 2020), 285-294. https://doi.org/10.17475/kastorman.849459.
JAMA Can A, Hazer B, Sivrikaya H. Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Kastamonu University Journal of Forestry Faculty. 2020;20:285–294.
MLA Can, Ahmet et al. “Chemical Modification of Poplar Wood With Benzophenone Tetracarboxylic Di Methacrylates”. Kastamonu University Journal of Forestry Faculty, vol. 20, no. 3, 2020, pp. 285-94, doi:10.17475/kastorman.849459.
Vancouver Can A, Hazer B, Sivrikaya H. Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Kastamonu University Journal of Forestry Faculty. 2020;20(3):285-94.

14178  14179       14165           14166           14167            14168