Research Article
BibTex RIS Cite

ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach

Year 2021, Volume: 21 Issue: 1, 12 - 20, 03.04.2021
https://doi.org/10.17475/kastorman.908596

Abstract

Aim of study: In this study, a ZnO-based smart artificial nano biomimetic form is created on the wooden surface with the hydrothermal approach to increase the resistance of the wood against moisture and water and provide a more hygienic surface.
Material and methods: Zinc borate, Zinc oxide, Sodium hydroxide and Hydrochloric acid were hydrothermally applied to the massive surface to synthesize the ZnO-based nano biomimetic structure on the lignocellulosic surface. The hydrophobization step was achieved using 1H,1H,2H,2H- Perfluorodecyltriethoxysilane. In the characterization step; XRD, EDX, SEM and TGA analyzes were done. WCA analysis was performed to determine the hydrophobicity feature.
Main results: ZnO-based nano biomimetic smart surface form with photo catalyst feature created on the wooden surface has provided a water contact angle of θγ 145°.
Highlights: Synthesized ZnO-based nano biomimetic smart surface form has given the wooden material a hydrophobic structure. Thanks to the new feature gained by functionalizing the lignocellulosic surface, it is predicted to be preferred in all areas where hygiene is desired.

Supporting Institution

Kahramanmaras Sutcu Imam University, Scientific Research Projects Coordination Department.

Project Number

2018/3-20 D

References

  • Aad, R., Simic, V., Cunff, L.L., Rocha, L., Sallet, V., Sartel, C., Lusson, A., Couteaua, C., & Lerondel G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic. Derivatives Nanoscale, 5, 9176-9180.
  • Bixler, G. D., Theiss, A., Bhushan, B. & Lee, S. C. (2014). Anti-fouling properties of micro structured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114-133.
  • Buck, M. E., Schwartz, S. C. & Lynn, D. M. (2010). Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers. Chemistry of Materials, 22(23), 6319-6327.
  • Evans, P. D., Owen, N. L., Schmid, S. & Webster R. D. (2002). Weathering and photo stability of benzylated wood. Polymer Degradation and Stability, 76(2), 291-303.
  • Faix, O., Bremer, J., Schmidt, O. & Tatjana, S. J. (1991). Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis—gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 21(1-2), 147-162.
  • Feng, X., Zhai, J., & Jiang L. (2005). The Fabrication and Switchable Super hydrophobicity of TiO2 Nanorod Films. Ange Wanted Chemie, 44(32), 5115-5118.
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • Guan, K. S. (2005). Relationship between photocatalytic activity, hydrophilicity and self−cleaning effect of TiO2/SiO2 films. Surface and Coatings Technology, 191, 155-160.
  • Hameury, S. (2005). Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study. Building and Environment, 40(10), 1400-1412.
  • He, G. & Wang, K. (2011). The super hydrophobicity of ZnO nanorods fabricated by electrochemical deposition method. Applied Surface Science, 257(15), 6590-6594.
  • Hsieh, C. T., Chang, B. S. & Lin, J. Y. (2011). Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating, Applied Surface Science, 257(18), 7997-8002.
  • Kavalenka, M. N., Hopf, A., Schneider, M., Worgull, M. & Hölscher, H. (2014). Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation, RSC Advances, 4(59), 31079-31083.
  • Kessler, F., Kühn, S., Radtke, C. & Weibel, D. E. (2012). Controlling the surface wettability of poly(sulfone) films by UV-assisted treatment: benefits in relation to plasma treatment, Polymer International, 62(2), 310-318.
  • Kim, T., Tahk, D. & Lee, H.H. (2009). Wettability-Controllable Super Water- and Moderately Oil-Repellent Surface Fabricated by Wet Chemical Etching. Langmuir, 25(11), 6576-6579.
  • Latthe, S. S., Terashima, C., Nakata, K., Sakai, M. & Fujishima, A. (2014). Development of sol–gel processed semi-transparent and self-cleaning superhydrophobic coatings. Journal of Materials Chemistry A, 2(15), 5548-5553.
  • Lu, B. & Li, N. (2015). Versatile aluminum alloy surface with various wettability. Applied Surface Science, 326, 168-173.
  • Li, J., Sun, Q., Jin, C. & Li, J. (2015). Comprehensive studies of the hydrothermal growth of ZnO nanocrystals on the surface of bamboo. Ceramics International, 41(1), 921-929.
  • Mahadik, S., Mahadik, D. B., Kavale, M. S., Parale, V. G., Wagh, P. B., Barshilia, H., Gupta, S., Hegde, N. D. & Rao, A. V. (2012). Thermally stable and transparent superhydrophobic sol–gel coatings by spray method. Journal of Sol-Gel Science and Technology, 63(3), 580-586.
  • Murphy, E. B. & Wudl, F. (2010). The world of smart healable materials. Progress in Polymer Science, 35(1-2), 223-251.
  • Ouajai, S. & Shanks, R. A. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu. D. & Tutuş, A. (2018). Akıllı malzemeler için biyomimetik yüzey tasarımları. Journal of Bartin Faculty of Forestry, 20(3), 1-1.
  • Ramazanoğlu, D. & Özdemi̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-331.
  • Sarkar, M. K., Bal, K., He, F. & Fan, J. (2011). Design of an outstanding super-hydrophobic surface by electro-spinning. Applied Surface Science, 257(15), 7003-7009.
  • Salapare, H. S., Guittard, F., Noblin, X., Taffin de Givenchy, E., Celestini, F. & Ramos, H. J. (2013). Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly (tetrafluoroethylene) surfaces. Journal of Colloid and Interface Science, 396, 287-292.
  • Toivonen, R. M. (2012). Product quality and value from consumer perspective an application to wooden products. Journal of Economics-Springer, 18(2), 157-173.
  • Thomas, Y. R. J., Benayad, A., Schroder, M., Morin, A. & Pauchet, J. (2015). New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts. ACS Applied Materials & Interfaces, 7(27), 15068-15077.
  • Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of The Royal Society Interface, 3(9), 471-482.
  • Well, E.D. & Levchik, S. (2004). Current practice and recent commercial developments in flame retardancy of polyamides. Journal of Fire Sciences, 22(3), 251-264.
  • Xia, T., Li, N., Wu, Y. & Liu, L. (2012). Patterned superhydrophobic surface based on Pd-based metallic glass. Applied Physics Letters, 101(8), 081601.
  • Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D., Sundar Moorthy, C. & Vigneswaran, N. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), 641-645.
  • Zhou, W., Sun, F., Pan, K., Tian, G., Jiang, B., Ren, Z., Tian, C. & Fu, H. (2011). Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 21(10), 1922-1930.

Hidrotermal Yaklaşım ile Lignoselülozik Yüzeyde Konumlandırılan ZnO Esaslı Nano Biyomimetik Akıllı Yapay Form

Year 2021, Volume: 21 Issue: 1, 12 - 20, 03.04.2021
https://doi.org/10.17475/kastorman.908596

Abstract

Çalışmanın amacı: Bu çalışmada, hidrotermal yaklaşımla ahşap yüzeyde ZnO esaslı akıllı yapay nano biyomimetik form oluşturularak ahşabın neme ve suya karşı olan direncinin artırarak daha hijyenik bir yüzeye sahip olmasını sağlamaktır.
Materyal ve yöntem: ZnO esaslı nano biyomimetik yapının lignoselülozik yüzeyde sentezlenmesi için Çinko borat, Çinko oksit, Sodyum hidroksit ve Hidroklorik asit masif yüzeye hidrotermal olarak uygulanmıştır. Hidrofobizasyon aşamasında 1H,1H,2H,2H-Perfluorodecyltriethoxysilan kullanılarak sağlanmıştır. In the characterization step; XRD, SEM, EDX and TGA analyzes were performed. WCA analysis was performed to determine the hydrophobicity property.
Temel sonuçlar: Ahşap yüzeyde oluşturulan foto katalizör özellikli ZnO esaslı nano biyomimetik akıllı yüzey formu θγ 145°’lik su temas açısı sağlanmıştır.
Araştırma vurguları: Sentezlenen ZnO esaslı nano biyomimetik akıllı yüzey formu ahşap malzemeye hidrofobik bir yapı kazandırmıştır. Lignoselülozik yüzeyin fonksiyonlandılmasıyla kazandırılan yeni özellik sayesinde hijyen istenen her türlü alanda tercih sebebi olması öngörülmektedir.

Project Number

2018/3-20 D

References

  • Aad, R., Simic, V., Cunff, L.L., Rocha, L., Sallet, V., Sartel, C., Lusson, A., Couteaua, C., & Lerondel G. (2013). ZnO nanowires as effective luminescent sensing materials for nitroaromatic. Derivatives Nanoscale, 5, 9176-9180.
  • Bixler, G. D., Theiss, A., Bhushan, B. & Lee, S. C. (2014). Anti-fouling properties of micro structured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science, 419, 114-133.
  • Buck, M. E., Schwartz, S. C. & Lynn, D. M. (2010). Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers. Chemistry of Materials, 22(23), 6319-6327.
  • Evans, P. D., Owen, N. L., Schmid, S. & Webster R. D. (2002). Weathering and photo stability of benzylated wood. Polymer Degradation and Stability, 76(2), 291-303.
  • Faix, O., Bremer, J., Schmidt, O. & Tatjana, S. J. (1991). Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis—gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 21(1-2), 147-162.
  • Feng, X., Zhai, J., & Jiang L. (2005). The Fabrication and Switchable Super hydrophobicity of TiO2 Nanorod Films. Ange Wanted Chemie, 44(32), 5115-5118.
  • Gan, W., Gao, L., Sun, Q., Jin, C., Lu, Y., & Li, J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 332, 565-572.
  • Gao, L., Lu, Y., Zhan, X. & Sun, Q. (2015a). A robust, anti-acid, and high-temperature humidity-resistant superhydrophobic surface of Wood based on a modified TiO2 film by fluoroalkyl silane. Surface and Coatings Technology, 262, 33-39.
  • Gao, L., Xiao, S., Gan, W., Zhan X. & Li, J., (2015b). Durable superamphiphobic wood surfaces from Cu2O film modified with fluorinated alkyl silane. Royal Society of Chemistry, 5, 98203-98208.
  • Guan, K. S. (2005). Relationship between photocatalytic activity, hydrophilicity and self−cleaning effect of TiO2/SiO2 films. Surface and Coatings Technology, 191, 155-160.
  • Hameury, S. (2005). Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study. Building and Environment, 40(10), 1400-1412.
  • He, G. & Wang, K. (2011). The super hydrophobicity of ZnO nanorods fabricated by electrochemical deposition method. Applied Surface Science, 257(15), 6590-6594.
  • Hsieh, C. T., Chang, B. S. & Lin, J. Y. (2011). Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating, Applied Surface Science, 257(18), 7997-8002.
  • Kavalenka, M. N., Hopf, A., Schneider, M., Worgull, M. & Hölscher, H. (2014). Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation, RSC Advances, 4(59), 31079-31083.
  • Kessler, F., Kühn, S., Radtke, C. & Weibel, D. E. (2012). Controlling the surface wettability of poly(sulfone) films by UV-assisted treatment: benefits in relation to plasma treatment, Polymer International, 62(2), 310-318.
  • Kim, T., Tahk, D. & Lee, H.H. (2009). Wettability-Controllable Super Water- and Moderately Oil-Repellent Surface Fabricated by Wet Chemical Etching. Langmuir, 25(11), 6576-6579.
  • Latthe, S. S., Terashima, C., Nakata, K., Sakai, M. & Fujishima, A. (2014). Development of sol–gel processed semi-transparent and self-cleaning superhydrophobic coatings. Journal of Materials Chemistry A, 2(15), 5548-5553.
  • Lu, B. & Li, N. (2015). Versatile aluminum alloy surface with various wettability. Applied Surface Science, 326, 168-173.
  • Li, J., Sun, Q., Jin, C. & Li, J. (2015). Comprehensive studies of the hydrothermal growth of ZnO nanocrystals on the surface of bamboo. Ceramics International, 41(1), 921-929.
  • Mahadik, S., Mahadik, D. B., Kavale, M. S., Parale, V. G., Wagh, P. B., Barshilia, H., Gupta, S., Hegde, N. D. & Rao, A. V. (2012). Thermally stable and transparent superhydrophobic sol–gel coatings by spray method. Journal of Sol-Gel Science and Technology, 63(3), 580-586.
  • Murphy, E. B. & Wudl, F. (2010). The world of smart healable materials. Progress in Polymer Science, 35(1-2), 223-251.
  • Ouajai, S. & Shanks, R. A. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327-335.
  • Özdemir, F., Ramazanoğlu. D. & Tutuş, A. (2018). Akıllı malzemeler için biyomimetik yüzey tasarımları. Journal of Bartin Faculty of Forestry, 20(3), 1-1.
  • Ramazanoğlu, D. & Özdemi̇r, F. (2020). Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması, Turkish Journal of Forestry, 21(3), 324-331.
  • Sarkar, M. K., Bal, K., He, F. & Fan, J. (2011). Design of an outstanding super-hydrophobic surface by electro-spinning. Applied Surface Science, 257(15), 7003-7009.
  • Salapare, H. S., Guittard, F., Noblin, X., Taffin de Givenchy, E., Celestini, F. & Ramos, H. J. (2013). Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly (tetrafluoroethylene) surfaces. Journal of Colloid and Interface Science, 396, 287-292.
  • Toivonen, R. M. (2012). Product quality and value from consumer perspective an application to wooden products. Journal of Economics-Springer, 18(2), 157-173.
  • Thomas, Y. R. J., Benayad, A., Schroder, M., Morin, A. & Pauchet, J. (2015). New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts. ACS Applied Materials & Interfaces, 7(27), 15068-15077.
  • Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of The Royal Society Interface, 3(9), 471-482.
  • Well, E.D. & Levchik, S. (2004). Current practice and recent commercial developments in flame retardancy of polyamides. Journal of Fire Sciences, 22(3), 251-264.
  • Xia, T., Li, N., Wu, Y. & Liu, L. (2012). Patterned superhydrophobic surface based on Pd-based metallic glass. Applied Physics Letters, 101(8), 081601.
  • Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D., Sundar Moorthy, C. & Vigneswaran, N. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), 641-645.
  • Zhou, W., Sun, F., Pan, K., Tian, G., Jiang, B., Ren, Z., Tian, C. & Fu, H. (2011). Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 21(10), 1922-1930.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Doğu Ramazanoğlu This is me 0000-0002-6356-5792

Ferhat Özdemir This is me 0000-0002-2282-1884

Project Number 2018/3-20 D
Publication Date April 3, 2021
Published in Issue Year 2021 Volume: 21 Issue: 1

Cite

APA Ramazanoğlu, D., & Özdemir, F. (2021). ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty, 21(1), 12-20. https://doi.org/10.17475/kastorman.908596
AMA Ramazanoğlu D, Özdemir F. ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty. April 2021;21(1):12-20. doi:10.17475/kastorman.908596
Chicago Ramazanoğlu, Doğu, and Ferhat Özdemir. “ZnO-Based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface With Hydrothermal Approach”. Kastamonu University Journal of Forestry Faculty 21, no. 1 (April 2021): 12-20. https://doi.org/10.17475/kastorman.908596.
EndNote Ramazanoğlu D, Özdemir F (April 1, 2021) ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty 21 1 12–20.
IEEE D. Ramazanoğlu and F. Özdemir, “ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach”, Kastamonu University Journal of Forestry Faculty, vol. 21, no. 1, pp. 12–20, 2021, doi: 10.17475/kastorman.908596.
ISNAD Ramazanoğlu, Doğu - Özdemir, Ferhat. “ZnO-Based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface With Hydrothermal Approach”. Kastamonu University Journal of Forestry Faculty 21/1 (April 2021), 12-20. https://doi.org/10.17475/kastorman.908596.
JAMA Ramazanoğlu D, Özdemir F. ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty. 2021;21:12–20.
MLA Ramazanoğlu, Doğu and Ferhat Özdemir. “ZnO-Based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface With Hydrothermal Approach”. Kastamonu University Journal of Forestry Faculty, vol. 21, no. 1, 2021, pp. 12-20, doi:10.17475/kastorman.908596.
Vancouver Ramazanoğlu D, Özdemir F. ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty. 2021;21(1):12-20.

14178  14179       14165           14166           14167            14168