Research Article
BibTex RIS Cite

Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir

Year 2022, Volume: 22 Issue: 1, 1 - 16, 31.03.2022
https://doi.org/10.17475/kastorman.1095703

Abstract

Aim of study: Two-year-old containerized balsam and concolor fir and one-year-old Eastern white pine transplants were grown under variable watering regimes with the goal of identifying plant morphological and some physiological traits under water stress.
Area of study: This experiment was conducted in a greenhouse at the Tree Research Center on the Michigan State University campus, East Lansing, Michigan.
Material and methods: Relative root collar diameter (RRCD), height growth (RHG), and root length (RRL) were measured as growth parameters. Stem water potential (Ψ), stomatal conductance (gs), net photosynthetic rate (Anet), intrinsic water use efficiency (iWUE=Anet/gs), foliar potassium (K+), and calcium (Ca+2) concentration were measured as physiological traits.
Main results: Well-watered transplants had significantly higher RRCD, RHG, and RRL in fir species. Balsam fir and white pine transplants had a higher Ψ than concolor fir under severe stress. Fir species had higher Anet, gs, and a lower iWUE than white pine. White pine had a lower foliar K+ concentration, while balsam fir had the highest foliar Ca+2 concentration. Balsam fir had higher growth and Anet, gs, and iWUE under water stress due to their ability to maintain higher water uptake despite a reduced soil water content.
Highlights: It is concluded that white pine has better drought tolerance because of the ability to withstand water stress through the mechanism of reduced photosynthetic activities and growth, minimize water loss, and increase water uptake.

References

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M. Kitzberger, T., Rigling, A., Breshears, D. D., (Ted) Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A. & Neil, C. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684.
  • Andrews, S. F., Flanagan, L. B., Sharp, E. J. & Cai, T. (2012). Variation in water potential, hydraulic characteristics and water source use in montane douglas-fir and lodgepole pine trees in southwestern alberta and consequences for seasonal changes in photosynthetic capacity. Tree Physiology, 32(2), 146-160.
  • Babita, M., Maheswari, M., Rao, L. M., Shanker, A. K. & Rao, D. G. (2010). Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) Hybrids. Environmental and Experimental Botany, 69(3), 243-249.
  • Bartels, D. & Sunkar, R. (2005). Critical reviews in plant sciences drought and salt tolerance in plants drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23-58.
  • Becker, C. A., Mroz, G. D. & Fuller, L. G. (1987). The effects of plant moisture stress on red pine (Pinus resinosa) seedling growth and establishment. Canadian Journal of Forest Research, 17(8), 813-820.
  • Bhattacharjee, S. & Saha, A. K. (2014). Plant water-stress response mechanisms. In Approaches To Plant Stress And Their Management, 149-172. Springer, New Delhi.
  • Brendel, O., Pot, D., Plomion, C., Rozenberg, P. & Guehl, J. M. (2002). Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant, Cell & Environment, 25(8), 945-953.
  • Brodribb, T. J., Feild, T. S. & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890-1898.
  • Brodribb, T. J. & McAdam, S. A. (2013). Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162(3), 1370-1377.
  • Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-292.
  • Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530.
  • Camarero, J. J., Franquesa, M., & Sangüesa-Barreda, G. (2015). Timing of drought triggers distinct growth responses in holm oak: implications to predict warming-induced forest defoliation and growth decline. Forests, 6(5), 1576-1597.
  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., Noblet, N. De., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T. & Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533.
  • Cregg, B. M. (2016). Choosing the right Christmas tree: Balsam fir. https://www.canr.msu.edu/news/choosing_the_right_christmas_tree#balsam [accessed August 01, 2018). Cregg, B. (2005). Conifer nutrition. Conifer corner. Michigan State University (MSU). Soil and Plant Nutrient Laboratory, 42-45.
  • Cregg, B. M. & Zhang. J.W. (2001). Physiology and morphology of pinus sylvestris seedlings from diverse sources under cyclic drought stress. Forest Ecology and Management, 154 (1-2), 131–139.
  • Domec, J. C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M. & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences, 105(33), 12069-12074.
  • Egilla, J. N., Davies, F. T., & Boutton, T.W. (2005). Drought Stress Influences Leaf Water Content, Photosynthesis, and Water-Use Efficiency of Hibiscus Rosa-Sinensis at Three Potassium Concentrations. Photosynthetica, 43(1), 135–140.
  • Farquhar, G. D. & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345.
  • Fernández, M., Novillo, C. & Pardos, J. A. (2006). Effects of water and nutrient availability in Pinus pinaster Ait. open pollinated families at an early age: growth, gas exchange and water relations. New Forests, 31(3), 321-342.
  • Frank, R. M. (1990). Balsam fir. Silvics or North America. USDA Forest Service, Ag. Handbook 654. (26-35).
  • Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871-887.
  • Gower, S. T., Vogt, K. A. & Grier, C. C. (1992). Carbon dynamics of Rocky Mountain Douglas‐fir: influence of water and nutrient availability. Ecological Monographs, 62(1), 43-65.
  • Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Köstner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T. & Wang, Q. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural And Forest Meteorology, 143(1-2), 123-145.
  • Grossnickle, S. C. (2012). Why seedlings survive: influence of plant attributes. New Forests, 43(5), 711-738.
  • Grossnickle, S. C. & Blake, T. J. (1987). Water relation patterns of bare-root and container jack pine and black spruce seedlings planted on boreal cut-over sites. New Forests, 1(2), 101-116.
  • Hamanishi, E. T. & Campbell, M. M. (2011). Genome-wide responses to drought in forest trees. Forestry, 84(3), 273-283.
  • Hepler, P. K. & Wayne, R. O. (1985). Calcium and plant development. Annual Review of Plant Physiology, 36(1), 397-439.
  • Hubbard, R. M., Ryan, M. G., Stiller, V. & Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, 24(1), 113-121.
  • Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A. & Ullah, A. (2021). Drought tolerance strategies in plants: A mechanistic approach. Journal of Plant Growth Regulation, 40(3), 926-944.
  • Jones, H. G. (1993). Drought tolerance and water-use efficiency. In Water Deficits: Plant Responses from Cell to Community. Eds. J.A.C. Smith and H. Griffiths. BIOS Scientific Publishers, Oxford, U.K.,193-203.
  • Klooster, W. S., Cregg, B. M., Fernandez, R. T. & Nzokou, P. (2010). Growth and photosynthetic response of pot-in-pot-grown conifers to substrate and controlled-release fertilizer. HortScience, 45(1), 36-42.
  • Koc, I., & Nzokou, P. (2018). Effects of water stress and cold treatments on the germination of two conifers (Pinus nigra and Pinus brutia) species from Turkey. HortScience, 53(9), 259.
  • Koç, İ. (2021a). Examining seed germination rate and seedlings gas exchange performances of some Turkish red pine provenances under water stress. Düzce University Journal of Science and Technology, 9(3), 48-60.
  • Koç, İ. (2021b). Examining of seed germination rate and seedlings gas exchange performances of Anatolian black pine under water stress. International Karabakh Applied Science Conference. Khazar Univeristy, June 17-19, 2021. (Conference paper).
  • Koç, İ. (2021c). Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environmental Science and Pollution Research, 28(27), 35880–35886.
  • Laacke, R. J. (1990). Concolor fir. Silvics or North America. USDA Forest Service, Ag. Handbook 654, 36-46.
  • Le Thiec, D., Dixon, M., Loosveldt, P. & Garrec, J. P. (1995). Seasonal and annual variations of phosphorus, calcium, potassium and manganese contents in different cross-sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO 2. Trees, 10(2), 55-62.
  • Li, F., Kang, S. & Zhang, J. (2003). CO2 Enrichment on Biomass Accumulation and Nitrogen Nutrition of Spring Wheat Under Different Soil Nitrogen and Water Status. Journal of Plant Nutrition, 26(4), 769-788.
  • Ma, R., Zhang, M., Li, B., Du, G., Wang, J. & Chen, J. (2005). The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments, 63(1), 177-190.
  • Martı́nez-Vilalta, J. & Piñol, J. (2002). Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Forest Ecology and Management, 161(1-3), 247-256.
  • Mäser, P., Leonhardt, N. & Schroeder, J. I. (2003). The clickable guard cell: electronically linked model of guard cell signal transduction pathways. The Arabidopsis Book, 1-4.
  • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G. & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739.
  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A.T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. & Zhao, Z. C. (2007). 2007: Global Climate Projections. Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 747–846.
  • Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., McDonnell, J. J. (2021). Tree water deficit and dynamic source water partitioning. Hydrol Process, 35(1), e14004.
  • Nikiema, P., Nzokou, P. & Rothstein, D. (2012). Effects of groundcover management on soil properties, tree physiology, foliar chemistry and growth in a newly established Fraser Fir (Abies fraseri [Pursh] Poir) plantation in Michigan, United States of America. New Forests, 43(2), 213–230.
  • Nilsen, P. (1995). Effect of Nitrogen on Drought Strain and Nutrient Uptake in Norway Spruce Picea abies (L.) Karst. Trees. Plant and Soil, 172(1), 73–85.
  • Nilsson, U. & Örlander, G. (1995). Effects Of Regeneration Methods On Drought Damage To Newly Planted Norway Spruce Seedlings. Canadian Journal of Forest Research 25(5), 790–802.
  • Nzokou, P., & Cregg, B. M. (2010). Morphology and foliar chemistry of containerized Abies fraseri (Pursh) Poir. seedlings as affected by water availability and nutrition. Annals of Forest Science, 67(6), 602.
  • Paoli, G. D., Curran, L. M. & Zak. D. R. (2005). Phosphorus eficiency of bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology, 86(6), 1548-1561.
  • Rasband, W. (2016). ImageJ. Image processing and analysis in java. Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA. Available from: http://rsbweb.nih.gov/ij/index.html
  • Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., Granier, A., Ogée, J., Allard, V., Aubinet, M., Bernhofer, Chr., Buchmann, N., Carrara, A., Grünwald, T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G., Soussana, J.-F., Sanz, M. J., Vesala, T. & Zhao M. (2007). Reduction of ecosystem productivity and respiration during the european summer 2003 climate anomaly: A Joint Flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3), 634–651.
  • Sánchez-Salguero, R., Ortíz, C., Covelo, F., Ochoa, V., García-Ruíz, R., Seco, J. I., Carreira, J. A., Merino, J. A. & Linares, J. C. (2015). Regulation of water use in the Southernmost European Fir (Abies pinsapo Boiss.): drought avoidance matters. Forests, 6(6), 2241-2260.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H. & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Shao, H. B., Song, W. Y. & Chu, L. Y. (2008). Advances of calcium signals involved in plant anti-drought. Comptes Rendus-Biologies, 331(8), 587-596.
  • Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R. & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the Globe. Critical Reviews in Biotechnology, 29(2),131–151.
  • Sinclair, T. R., Tanner, C. B. & Bennett, J. M. (1984). Water-Use efficiency in crop production. American Institute of Biological Sciences, 34(1), 36–40.
  • Teskey, R. O., Bongarten, B. C., Cregg, B. M., Dougherty, P. M. & Hennessey, T. C. (1987). Physiology and genetics of tree growth response to moisture and temperature stress: an examination of the characteristics of loblolly pine (Pinus taeda L.). Tree Physiology, 3(1), 41-61.
  • Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science, 9(4), 289-308.
  • Tyree, M. T., & Sperry, J. S. (1988). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology, 88(3), 574-580. Wendel, G. W., Smith, H. C. (1990). Eastern white pine. Silvics or North America. USDA Forest Service, Ag. Handbook 654, 476-488.
  • Wennerberg, S. (2004a). Plant Guide: White fir - Abies Concolor (Gord. & Glend.) Lindl. Ex. Hildebr.” Plant Guide, USDA, NRCS, National Plant Data Center, 1991,1–4.
  • Wennerberg, S. (2004b). Ponderosa pine. Plant Guide. USDA, NRCS.
  • Williams, L. E. & F. J. Araujo. (2002). correlations among predawn leaf, midday leaf , and midday stem water potential and their correlations with other measures of soil and plant water status in vitis vinifera. Journal of American Society Horticultural Science, 127(3), 448–454.
  • Wood, K. (2006). Drought-Tolerant Trees for Colorado Landscapes. Colorado State Forest Service.
  • Wright, G. C., Hubick, K. T., Farquhar, G. D. & Rao, R. N. (1993). Genetic and environmental variation in transpiration efficiency and its correlation with carbon isotope discrimination and specific leaf area in peanut. In Stable isotopes and plant carbon-water relations, 247-267. Academic press.
  • Xu, C., Li, X. & Zhang. L. (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of zoysia japonica under drought conditions. PLoS ONE, 8(7), 1–10.
  • Zhang, J. W., Feng, Z., Cregg, B. M. & Schumann, C. M., (1997). Carbon Isotopic composition, gas exchange, and growth of three pine differing in drought tolerance. Tree Physiology, 17(7), 461-466.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S. & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 126626.
  • Zweifel, R., Rigling, A. & Dobbertin, M. (2009). Species‐specific stomatal response of trees to drought–a link to vegetation dynamics? Journal of Vegetation Science, 20(3), 442-454.

Bazı Kozalaklı Türlerin Su Stresine Tepkileri Farklı Mıdır? Beyaz Çam, Balsam ve Concolor Göknarının Karşılaştırmalı Bir Çalışması

Year 2022, Volume: 22 Issue: 1, 1 - 16, 31.03.2022
https://doi.org/10.17475/kastorman.1095703

Abstract

Çalışmanın amacı: İki yaşındaki tüplü balsam ve gümüşi göknarı ile bir yaşındaki beyaz çam fidanlarının su stresine altındaki morfolojik ve bazı fizyolojik etkilerinin belirlenmesi amacıyla farklı sulama rejimlerinde yetiştirildi.
Çalışma alanı: Bu çalışma Michigan State Universitesi kampüsündeki Ağaç Araştırma Merkezi serasında gerçekleştirilmiştir.
Materyal ve yöntem: Büyüme parametreleri olarak bağıl kök boğazı çapı (RRCD), bağıl boy büyümesi (RHG) ve bağıl kök uzunluğu (RRL) ölçülmüştür. Fizyolojik özellik olarak ksilem su potansiyeli (Ψ), net fotosentez (Anet), stoma iletkenliği (gs), içsel su kullanım verimliliği (iWUE=Anet/gs), yaprak potasyum (K+) ve kalsiyum (Ca+2) konsantrasyonları ölçüldü.
Temel sonuçlar: Göknar türlerinden iyi sulanan fidanlarında daha yüksek RRCD, RHG ve RRL değerleri tespit edildi. Şiddetli stres altında balsam göknarı ve beyaz çam fidanları gümüşi göknar fidanlarına kıyasla daha yüksek Ψ ölçülmüştür. Göknar türleri beyaz çam fidanlarından daha yüksek Anet, gs ve daha düşük bir iWUE'ye sahiptir. Düşük yaprak K+ konsantrasyonu beyaz çam fidanlarında gözlenirken en yüksek yaprak Ca+2 konsantrasyonu balsam göknarında ölçülmüştür. Balsam göknarı topraktaki su içeriğinin azalmasına rağmen daha yüksek su alımını sürdürme yeteneklerinden dolayı, su stresi altında beyaz çamdan daha iyi bir büyüme ve daha yüksek Anet, gs ve iWUE değerlerine sahiptir.
Araştırma vurguları: Azalan fotosentetik aktivite ve büyüme mekanizması, su kaybını en aza indirme ve su alımını artırma yeteneği yoluyla su stresine karşı koyma beyaz çamı iki göknar türüne göre daha yüksek kuraklık toleransına sahip olduğu sonucuna varılmıştır.

References

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M. Kitzberger, T., Rigling, A., Breshears, D. D., (Ted) Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A. & Neil, C. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684.
  • Andrews, S. F., Flanagan, L. B., Sharp, E. J. & Cai, T. (2012). Variation in water potential, hydraulic characteristics and water source use in montane douglas-fir and lodgepole pine trees in southwestern alberta and consequences for seasonal changes in photosynthetic capacity. Tree Physiology, 32(2), 146-160.
  • Babita, M., Maheswari, M., Rao, L. M., Shanker, A. K. & Rao, D. G. (2010). Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) Hybrids. Environmental and Experimental Botany, 69(3), 243-249.
  • Bartels, D. & Sunkar, R. (2005). Critical reviews in plant sciences drought and salt tolerance in plants drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23-58.
  • Becker, C. A., Mroz, G. D. & Fuller, L. G. (1987). The effects of plant moisture stress on red pine (Pinus resinosa) seedling growth and establishment. Canadian Journal of Forest Research, 17(8), 813-820.
  • Bhattacharjee, S. & Saha, A. K. (2014). Plant water-stress response mechanisms. In Approaches To Plant Stress And Their Management, 149-172. Springer, New Delhi.
  • Brendel, O., Pot, D., Plomion, C., Rozenberg, P. & Guehl, J. M. (2002). Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant, Cell & Environment, 25(8), 945-953.
  • Brodribb, T. J., Feild, T. S. & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890-1898.
  • Brodribb, T. J. & McAdam, S. A. (2013). Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162(3), 1370-1377.
  • Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-292.
  • Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530.
  • Camarero, J. J., Franquesa, M., & Sangüesa-Barreda, G. (2015). Timing of drought triggers distinct growth responses in holm oak: implications to predict warming-induced forest defoliation and growth decline. Forests, 6(5), 1576-1597.
  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., Noblet, N. De., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T. & Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533.
  • Cregg, B. M. (2016). Choosing the right Christmas tree: Balsam fir. https://www.canr.msu.edu/news/choosing_the_right_christmas_tree#balsam [accessed August 01, 2018). Cregg, B. (2005). Conifer nutrition. Conifer corner. Michigan State University (MSU). Soil and Plant Nutrient Laboratory, 42-45.
  • Cregg, B. M. & Zhang. J.W. (2001). Physiology and morphology of pinus sylvestris seedlings from diverse sources under cyclic drought stress. Forest Ecology and Management, 154 (1-2), 131–139.
  • Domec, J. C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M. & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences, 105(33), 12069-12074.
  • Egilla, J. N., Davies, F. T., & Boutton, T.W. (2005). Drought Stress Influences Leaf Water Content, Photosynthesis, and Water-Use Efficiency of Hibiscus Rosa-Sinensis at Three Potassium Concentrations. Photosynthetica, 43(1), 135–140.
  • Farquhar, G. D. & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345.
  • Fernández, M., Novillo, C. & Pardos, J. A. (2006). Effects of water and nutrient availability in Pinus pinaster Ait. open pollinated families at an early age: growth, gas exchange and water relations. New Forests, 31(3), 321-342.
  • Frank, R. M. (1990). Balsam fir. Silvics or North America. USDA Forest Service, Ag. Handbook 654. (26-35).
  • Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871-887.
  • Gower, S. T., Vogt, K. A. & Grier, C. C. (1992). Carbon dynamics of Rocky Mountain Douglas‐fir: influence of water and nutrient availability. Ecological Monographs, 62(1), 43-65.
  • Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Köstner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T. & Wang, Q. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural And Forest Meteorology, 143(1-2), 123-145.
  • Grossnickle, S. C. (2012). Why seedlings survive: influence of plant attributes. New Forests, 43(5), 711-738.
  • Grossnickle, S. C. & Blake, T. J. (1987). Water relation patterns of bare-root and container jack pine and black spruce seedlings planted on boreal cut-over sites. New Forests, 1(2), 101-116.
  • Hamanishi, E. T. & Campbell, M. M. (2011). Genome-wide responses to drought in forest trees. Forestry, 84(3), 273-283.
  • Hepler, P. K. & Wayne, R. O. (1985). Calcium and plant development. Annual Review of Plant Physiology, 36(1), 397-439.
  • Hubbard, R. M., Ryan, M. G., Stiller, V. & Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, 24(1), 113-121.
  • Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A. & Ullah, A. (2021). Drought tolerance strategies in plants: A mechanistic approach. Journal of Plant Growth Regulation, 40(3), 926-944.
  • Jones, H. G. (1993). Drought tolerance and water-use efficiency. In Water Deficits: Plant Responses from Cell to Community. Eds. J.A.C. Smith and H. Griffiths. BIOS Scientific Publishers, Oxford, U.K.,193-203.
  • Klooster, W. S., Cregg, B. M., Fernandez, R. T. & Nzokou, P. (2010). Growth and photosynthetic response of pot-in-pot-grown conifers to substrate and controlled-release fertilizer. HortScience, 45(1), 36-42.
  • Koc, I., & Nzokou, P. (2018). Effects of water stress and cold treatments on the germination of two conifers (Pinus nigra and Pinus brutia) species from Turkey. HortScience, 53(9), 259.
  • Koç, İ. (2021a). Examining seed germination rate and seedlings gas exchange performances of some Turkish red pine provenances under water stress. Düzce University Journal of Science and Technology, 9(3), 48-60.
  • Koç, İ. (2021b). Examining of seed germination rate and seedlings gas exchange performances of Anatolian black pine under water stress. International Karabakh Applied Science Conference. Khazar Univeristy, June 17-19, 2021. (Conference paper).
  • Koç, İ. (2021c). Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environmental Science and Pollution Research, 28(27), 35880–35886.
  • Laacke, R. J. (1990). Concolor fir. Silvics or North America. USDA Forest Service, Ag. Handbook 654, 36-46.
  • Le Thiec, D., Dixon, M., Loosveldt, P. & Garrec, J. P. (1995). Seasonal and annual variations of phosphorus, calcium, potassium and manganese contents in different cross-sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO 2. Trees, 10(2), 55-62.
  • Li, F., Kang, S. & Zhang, J. (2003). CO2 Enrichment on Biomass Accumulation and Nitrogen Nutrition of Spring Wheat Under Different Soil Nitrogen and Water Status. Journal of Plant Nutrition, 26(4), 769-788.
  • Ma, R., Zhang, M., Li, B., Du, G., Wang, J. & Chen, J. (2005). The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments, 63(1), 177-190.
  • Martı́nez-Vilalta, J. & Piñol, J. (2002). Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Forest Ecology and Management, 161(1-3), 247-256.
  • Mäser, P., Leonhardt, N. & Schroeder, J. I. (2003). The clickable guard cell: electronically linked model of guard cell signal transduction pathways. The Arabidopsis Book, 1-4.
  • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G. & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739.
  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A.T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. & Zhao, Z. C. (2007). 2007: Global Climate Projections. Climate Change 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 747–846.
  • Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., McDonnell, J. J. (2021). Tree water deficit and dynamic source water partitioning. Hydrol Process, 35(1), e14004.
  • Nikiema, P., Nzokou, P. & Rothstein, D. (2012). Effects of groundcover management on soil properties, tree physiology, foliar chemistry and growth in a newly established Fraser Fir (Abies fraseri [Pursh] Poir) plantation in Michigan, United States of America. New Forests, 43(2), 213–230.
  • Nilsen, P. (1995). Effect of Nitrogen on Drought Strain and Nutrient Uptake in Norway Spruce Picea abies (L.) Karst. Trees. Plant and Soil, 172(1), 73–85.
  • Nilsson, U. & Örlander, G. (1995). Effects Of Regeneration Methods On Drought Damage To Newly Planted Norway Spruce Seedlings. Canadian Journal of Forest Research 25(5), 790–802.
  • Nzokou, P., & Cregg, B. M. (2010). Morphology and foliar chemistry of containerized Abies fraseri (Pursh) Poir. seedlings as affected by water availability and nutrition. Annals of Forest Science, 67(6), 602.
  • Paoli, G. D., Curran, L. M. & Zak. D. R. (2005). Phosphorus eficiency of bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology, 86(6), 1548-1561.
  • Rasband, W. (2016). ImageJ. Image processing and analysis in java. Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA. Available from: http://rsbweb.nih.gov/ij/index.html
  • Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., Granier, A., Ogée, J., Allard, V., Aubinet, M., Bernhofer, Chr., Buchmann, N., Carrara, A., Grünwald, T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pilegaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G., Soussana, J.-F., Sanz, M. J., Vesala, T. & Zhao M. (2007). Reduction of ecosystem productivity and respiration during the european summer 2003 climate anomaly: A Joint Flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3), 634–651.
  • Sánchez-Salguero, R., Ortíz, C., Covelo, F., Ochoa, V., García-Ruíz, R., Seco, J. I., Carreira, J. A., Merino, J. A. & Linares, J. C. (2015). Regulation of water use in the Southernmost European Fir (Abies pinsapo Boiss.): drought avoidance matters. Forests, 6(6), 2241-2260.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H. & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Shao, H. B., Song, W. Y. & Chu, L. Y. (2008). Advances of calcium signals involved in plant anti-drought. Comptes Rendus-Biologies, 331(8), 587-596.
  • Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R. & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the Globe. Critical Reviews in Biotechnology, 29(2),131–151.
  • Sinclair, T. R., Tanner, C. B. & Bennett, J. M. (1984). Water-Use efficiency in crop production. American Institute of Biological Sciences, 34(1), 36–40.
  • Teskey, R. O., Bongarten, B. C., Cregg, B. M., Dougherty, P. M. & Hennessey, T. C. (1987). Physiology and genetics of tree growth response to moisture and temperature stress: an examination of the characteristics of loblolly pine (Pinus taeda L.). Tree Physiology, 3(1), 41-61.
  • Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science, 9(4), 289-308.
  • Tyree, M. T., & Sperry, J. S. (1988). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology, 88(3), 574-580. Wendel, G. W., Smith, H. C. (1990). Eastern white pine. Silvics or North America. USDA Forest Service, Ag. Handbook 654, 476-488.
  • Wennerberg, S. (2004a). Plant Guide: White fir - Abies Concolor (Gord. & Glend.) Lindl. Ex. Hildebr.” Plant Guide, USDA, NRCS, National Plant Data Center, 1991,1–4.
  • Wennerberg, S. (2004b). Ponderosa pine. Plant Guide. USDA, NRCS.
  • Williams, L. E. & F. J. Araujo. (2002). correlations among predawn leaf, midday leaf , and midday stem water potential and their correlations with other measures of soil and plant water status in vitis vinifera. Journal of American Society Horticultural Science, 127(3), 448–454.
  • Wood, K. (2006). Drought-Tolerant Trees for Colorado Landscapes. Colorado State Forest Service.
  • Wright, G. C., Hubick, K. T., Farquhar, G. D. & Rao, R. N. (1993). Genetic and environmental variation in transpiration efficiency and its correlation with carbon isotope discrimination and specific leaf area in peanut. In Stable isotopes and plant carbon-water relations, 247-267. Academic press.
  • Xu, C., Li, X. & Zhang. L. (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of zoysia japonica under drought conditions. PLoS ONE, 8(7), 1–10.
  • Zhang, J. W., Feng, Z., Cregg, B. M. & Schumann, C. M., (1997). Carbon Isotopic composition, gas exchange, and growth of three pine differing in drought tolerance. Tree Physiology, 17(7), 461-466.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S. & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 126626.
  • Zweifel, R., Rigling, A. & Dobbertin, M. (2009). Species‐specific stomatal response of trees to drought–a link to vegetation dynamics? Journal of Vegetation Science, 20(3), 442-454.
There are 68 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İsmail Koç This is me

Pascal Nzokou This is me

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Koç, İ., & Nzokou, P. (2022). Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir. Kastamonu University Journal of Forestry Faculty, 22(1), 1-16. https://doi.org/10.17475/kastorman.1095703
AMA Koç İ, Nzokou P. Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir. Kastamonu University Journal of Forestry Faculty. March 2022;22(1):1-16. doi:10.17475/kastorman.1095703
Chicago Koç, İsmail, and Pascal Nzokou. “Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir”. Kastamonu University Journal of Forestry Faculty 22, no. 1 (March 2022): 1-16. https://doi.org/10.17475/kastorman.1095703.
EndNote Koç İ, Nzokou P (March 1, 2022) Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir. Kastamonu University Journal of Forestry Faculty 22 1 1–16.
IEEE İ. Koç and P. Nzokou, “Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, pp. 1–16, 2022, doi: 10.17475/kastorman.1095703.
ISNAD Koç, İsmail - Nzokou, Pascal. “Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir”. Kastamonu University Journal of Forestry Faculty 22/1 (March 2022), 1-16. https://doi.org/10.17475/kastorman.1095703.
JAMA Koç İ, Nzokou P. Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir. Kastamonu University Journal of Forestry Faculty. 2022;22:1–16.
MLA Koç, İsmail and Pascal Nzokou. “Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, 2022, pp. 1-16, doi:10.17475/kastorman.1095703.
Vancouver Koç İ, Nzokou P. Do Various Conifers Respond Differently to Water Stress? A Comparative Study of White Pine, Concolor and Balsam Fir. Kastamonu University Journal of Forestry Faculty. 2022;22(1):1-16.

Cited By









14178  14179       14165           14166           14167            14168