Research Article
BibTex RIS Cite

Karayemiş Meyvesinin (Laurocerasus officinalis L.) İnce Tabaka Kuruma Modelleri ve Renk Değerlerine Genotip ve Kurutma Sıcaklıklarının Etkisi

Year 2022, Volume: 22 Issue: 1, 24 - 32, 31.03.2022
https://doi.org/10.17475/kastorman.1095719

Abstract

Çalışmanın amacı: Tarımsal ürünlerde olduğu gibi karayemiş meyvesinin kalite ve kuruma özelliklerine kurutma havası sıcaklığının etkisi önemlidir. Literatürde 55 ºC sıcaklık değerinin karayemiş meyvesinin kurutulması için kullanıldığı görülmektedir. Bu sebeple çalışmanın amacı merkez sıcaklık değeri 55 ºC baz alınarak üst ve alt sıcaklık değerlerinin karayemişin kurumasına olan etkisini araştırmaktır.
Materyal ve yöntem: Bu çalışmada, 54K01 ve 55K07 genotipli karayemiş meyveleri 50, 55 ve 60 ºC sıcaklıklarda % 10-15 nem aralığına kadar kurutulmuştur. Ürünün renk ve kuruma modelleri açısından en uygun sıcaklık belirlenmiştir.
Temel sonuçlar: 54K01 genotipli karayemiş meyvesine ait en uzun ve en kısa kuruma süreleri sırasıyla 34.5 ve 21.5 saat olarak tespit edilmiştir. 55K07 genotipli meyve için ise bu değerler sırasıyla 22.5 ve 12 saat olarak bulunmuştur. Ürünlerin kurutma sıcaklıkları altında sergilemiş oldukları kuruma oranları Modified Page, Wang Singh, Jena Das ve Lewis ince tabakalı kuruma eşitliklerinde işlenmiştir. Sıcaklık değerinin artmasıyla her iki genotipin kuruma süresi önemli seviyede azaltmıştır. Kurutma sıcaklıklarının 50’den 60 ºC’ye yükselmesi durumunda kuruma süresi 54K01 genotipi için % 37.68 ve 55K07 genotipi için % 46.67 oranında azalmıştır.
Araştırma vurguları: Modeller arasında 54K01 ve 55K07 genotiplerinin her ikisi içinde en iyi Wang Sing modeli kuruma verilerini en iyi tahmin etmiştir. Kurutulan örneklere ait ölçülen ve hesaplanan renk değerleri tazelerine göre kıyaslanmış ve 54K01 ile 55K07 genotipleri için sırasıyla 50 ve 60 ºC kurutma sıcaklıklarında kurutulmalarının daha uygun olacağı tespit edilmiştir.

References

  • Anonymous (2019). Cherry Laurel Production. Republic of Turkey Ministry of Agriculture and Forestry Hazelnut Research Institute, https://arastirma.tarimorman.gov.tr (Access date: 06.12.2019).
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M., & Esehaghbeygi, A. (2012). Comparative Evaluation of the Effects of Electrohydrodynamic, Oven, and Ambient Air on Carrot Cylindrical Slices during Drying Proces. Drying Technology, 30, 88–96.
  • Bakhshipour, A. A., Jafari, A. & Zomorodian, A. (2012). Vision based features in moisture content measurement during raisin production. World Applied Sciences Journal, 17(7), 860-869.
  • Bantle, M., Kopp, C. & Claussen, I. C. (2019). Improved process control by surface temperature-controlled drying on the example of sweet potatoes. Proceedings of Eurodrying’2019 Torino, Italy, July, 10-12.
  • Chitrakar, B., Zhang, M. & Adhikari, B. (2019). Dehydrated foods: Are they microbiologically safe? Journal Critical Reviews in Food Science and Nutrition, 59(17), 2734-275.
  • Celik, O. F., Demirkol, M., Durmus, Y. & Tarakci Z. (2019). Effects of drying method on the phenolics content and antioxidant activities of cherry laurel (Prunus laurocerasus L.). Journal of Food Measurement and Characterization, doi.org/10.1007/s11694-019-00266-6, 1-7.
  • Demirkol, M. & Tarakci, Z. (2018). Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT Food Science and Technology, 97, 770-777.
  • Doymaz, İ., Tugrul, N. & Pala, M. (2003). Investigation of Drying Characteristics of Parsley, Yildiz Technical University Journal, 1-8.
  • Doymaz, İ. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer, 47, 277–285.
  • Enache, E., Luce, S. & Lucore, L. (2017). Test Methods for Salmonella in Low‐Moisture Foods. Wiley Online Library, doi.org/10.1002/9781119071051.ch8.
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98, 461-470.
  • Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V. & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40-46.
  • Ghanbarian, D., Torku-Harchegani, M., Sadeghi, M. & Pirbalouti, A. G. (2019). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy, https://doi.org/10.1016/j.renene.2019.10.024.
  • Gümüşay, Ö. A. & Yildirim Yalçin, M. (2019). Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda, 17, 9-15. Doi: 10.24323/akademik-gida.543985.
  • Jain, D. & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78(4), 1315-1319.
  • Jena, S. & Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79, 92-99.
  • Kasim, R., Sulusoglu, M. & Kasim, M. U. (2011). Relationship between total anthocyanin level and colour of natural cherry laurel (Prunus laurocerasus L.) fruits. African Journal of Plant Science, 5, 323-328.
  • Lewandowski, A., Jaskulski, M. & Zbicinski, I. (2019). Effect of foam spray drying process parameters on powder morphology. Drying Technology, 37, 535–545, doi.org/10.1080/07373937.2018.1508032, 2019.
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13, 427-443.
  • Majdi, H. & Esfahani, J. A. (2019). Energy and drying time optimization of convective drying: Taguchi and LBM methods. Drying Technology, 37, 722–734. https://doi.org/10.1080/07373937.2018.1458036.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78.
  • Mcguire, R. G. (1992). Reporting of objective color measurements. HortScience, 27, 1254-1255.
  • Mello, R. E., Fontana, A., Mulet, A., Luiz, J., Correa Juan, G. & Carcel, A. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology, 38(1–2), 259–267 doi.org/10.1080/07373937.2019.1645685.
  • Misha, S., Mat, S., Ruslan, M. H., Sopian, K. & Salleh, E. (2013). Review on the Application of a Tray Dryer System for Agricultural Products. World Applied Sciences Journal, 22(3), 424-433.
  • Özgen, F. (2014). Design of a convective type drying system for apple drying process, Mühendis ve Makine, 55(656), 42-49, (in Turkish).
  • Panagopoulou, E. A., Chiou, A., Nikolidaki, E. K., Christea, M. & Karathanos, V. T. (2019). Corinthian raisins (Vitis vinifera L., var. Apyrena) antioxidant and sugar contentas affected by the drying process: a 3-year study. Journal Science Food Agriculture, 99, 915-922.
  • Polatci, H., Tasova, M., Saraçoglu, O. & Taşkin, O. (2018). Determination of drying parameters of peach (Prunus persica L.) pomace at different temperatures. Journal of Agricultural Machinery Science, 14, 149-156, 2018 (in Turkish).
  • Purlis, E. (2019). Modelling convective drying of foods: A multiphase porous media model considering heat of sorption. Journal of Food Engineering, 263, 132-146.
  • Ramallo, L. A., & Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99, 275-283.
  • Szadzinska, J., Lectanska, J., Pashminehazar, R., Kharaghani, A. & Tsotsas, E. (2019). Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology, 37, 1–12.
  • Szulmayer, W. (1971). From sun drying to solar dehydration I. Methods and equipments. Food Technology in Australia, 23, 440-443.
  • Talih, M. & Dirim, S. N. (2018). Determination of the drying characteristics of cherry laurel (Laurocerasus officinalis Roem.) puree in a freeze-dryer. Bulgarian Chemical Communications, 50(3), 467–477. Taşova, M., Ergüneş, G., Gerçekcioglu, R. & Karagül, Ş. (2019). Konvektif ve mikrodalga yöntemlerle kurutulan kuşburnu (RosamontanaChaixsubsp. woronovii (Lonacz) Ö. Nilsson) meyvelerinde kalite değişimleri. Anadolu Journal of Agricultural Sciences, 34(3), 312-318, (in Turkish).
  • Tan, M., Chua, K. J., Mujumdar, A. S. & Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19, 2193-2207.
  • Tellez, M. C., Tellez, B. C., Navarro, J. A. A., Sierra, J. C. O. & Perez, G. A. M. (2019). Kinetics of Drying Medicinal Plants by Hybridization of Solar Technologies. Chapter Drying Unit Operations, Publisher: IntechOpen, 1-17.
  • Wang, C.Y. & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wojdylo, A., Figiel, A., Lech, K., Nowicka, P. & Oszmianski, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. J Food Bioprocess Technol., 7, 829–841.
  • Yagcioglu, A. (1999). Drying of agricultural products. Ege University Faculty of Agriculture, Publish Number 536. Bornova, İzmir-Turkey. (in Turkish).
  • Yildiz, A. K., Tasova, M. & Polatci, H. (2019). Determination of the most appropriate thin layer curves of crocus (Crocus Spp.) plant with artificial neural networks (ANN). ICCTAFA, Congress, 11-12 July, Konya-Turkey.

Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits

Year 2022, Volume: 22 Issue: 1, 24 - 32, 31.03.2022
https://doi.org/10.17475/kastorman.1095719

Abstract

Aim of study: As in agricultural products, the effect of drying air temperature on the quality and drying properties of black nut fruit is important. In the literature, it is seen that the temperature value of 55 ºC is used for drying the black nut fruit. For this reason, the aim of the study is to investigate the effect of upper and lower temperature values on the drying of black nut, based on the core temperature value of 55 ºC.
Material and methods: In this study, black nut fruits with 54K01 and 55K07 genotypes were dried at 50, 55 and 60 ºC temperatures up to 10-15% humidity range. The most suitable temperature was determined in terms of color and drying models of the product.
Main results: The longest and shortest drying times of the 54K01 genotype black nut fruit were determined as 34.5 and 21.5 hours, respectively. For 55K07 genotype fruit, these values were found as 22.5 and 12 hours, respectively. The drying rates of the products under drying temperatures were processed in Modified Page, Wang Singh, Jena Das and Lewis thin-layer drying equations. With the increase in temperature, the drying time of both genotypes decreased significantly. In case the drying temperatures increased from 50 to 60 ºC, the drying time decreased by 37.68% for the 54K01 genotype and by 46.67% for the 55K07 genotype.
Highlights: Among the models, the Wang Sing model best predicted drying data for both the 54K01 and 55K07 genotypes. The measured and calculated color values of the dried samples were compared with the fresh ones and it was determined that drying at 50 and 60 ºC drying temperatures would be more appropriate for the 54K01 and 55K07 genotypes, respectively.

References

  • Anonymous (2019). Cherry Laurel Production. Republic of Turkey Ministry of Agriculture and Forestry Hazelnut Research Institute, https://arastirma.tarimorman.gov.tr (Access date: 06.12.2019).
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M., & Esehaghbeygi, A. (2012). Comparative Evaluation of the Effects of Electrohydrodynamic, Oven, and Ambient Air on Carrot Cylindrical Slices during Drying Proces. Drying Technology, 30, 88–96.
  • Bakhshipour, A. A., Jafari, A. & Zomorodian, A. (2012). Vision based features in moisture content measurement during raisin production. World Applied Sciences Journal, 17(7), 860-869.
  • Bantle, M., Kopp, C. & Claussen, I. C. (2019). Improved process control by surface temperature-controlled drying on the example of sweet potatoes. Proceedings of Eurodrying’2019 Torino, Italy, July, 10-12.
  • Chitrakar, B., Zhang, M. & Adhikari, B. (2019). Dehydrated foods: Are they microbiologically safe? Journal Critical Reviews in Food Science and Nutrition, 59(17), 2734-275.
  • Celik, O. F., Demirkol, M., Durmus, Y. & Tarakci Z. (2019). Effects of drying method on the phenolics content and antioxidant activities of cherry laurel (Prunus laurocerasus L.). Journal of Food Measurement and Characterization, doi.org/10.1007/s11694-019-00266-6, 1-7.
  • Demirkol, M. & Tarakci, Z. (2018). Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT Food Science and Technology, 97, 770-777.
  • Doymaz, İ., Tugrul, N. & Pala, M. (2003). Investigation of Drying Characteristics of Parsley, Yildiz Technical University Journal, 1-8.
  • Doymaz, İ. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer, 47, 277–285.
  • Enache, E., Luce, S. & Lucore, L. (2017). Test Methods for Salmonella in Low‐Moisture Foods. Wiley Online Library, doi.org/10.1002/9781119071051.ch8.
  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98, 461-470.
  • Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V. & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40-46.
  • Ghanbarian, D., Torku-Harchegani, M., Sadeghi, M. & Pirbalouti, A. G. (2019). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy, https://doi.org/10.1016/j.renene.2019.10.024.
  • Gümüşay, Ö. A. & Yildirim Yalçin, M. (2019). Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda, 17, 9-15. Doi: 10.24323/akademik-gida.543985.
  • Jain, D. & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78(4), 1315-1319.
  • Jena, S. & Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79, 92-99.
  • Kasim, R., Sulusoglu, M. & Kasim, M. U. (2011). Relationship between total anthocyanin level and colour of natural cherry laurel (Prunus laurocerasus L.) fruits. African Journal of Plant Science, 5, 323-328.
  • Lewandowski, A., Jaskulski, M. & Zbicinski, I. (2019). Effect of foam spray drying process parameters on powder morphology. Drying Technology, 37, 535–545, doi.org/10.1080/07373937.2018.1508032, 2019.
  • Lewis, W. K. (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13, 427-443.
  • Majdi, H. & Esfahani, J. A. (2019). Energy and drying time optimization of convective drying: Taguchi and LBM methods. Drying Technology, 37, 722–734. https://doi.org/10.1080/07373937.2018.1458036.
  • Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78.
  • Mcguire, R. G. (1992). Reporting of objective color measurements. HortScience, 27, 1254-1255.
  • Mello, R. E., Fontana, A., Mulet, A., Luiz, J., Correa Juan, G. & Carcel, A. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology, 38(1–2), 259–267 doi.org/10.1080/07373937.2019.1645685.
  • Misha, S., Mat, S., Ruslan, M. H., Sopian, K. & Salleh, E. (2013). Review on the Application of a Tray Dryer System for Agricultural Products. World Applied Sciences Journal, 22(3), 424-433.
  • Özgen, F. (2014). Design of a convective type drying system for apple drying process, Mühendis ve Makine, 55(656), 42-49, (in Turkish).
  • Panagopoulou, E. A., Chiou, A., Nikolidaki, E. K., Christea, M. & Karathanos, V. T. (2019). Corinthian raisins (Vitis vinifera L., var. Apyrena) antioxidant and sugar contentas affected by the drying process: a 3-year study. Journal Science Food Agriculture, 99, 915-922.
  • Polatci, H., Tasova, M., Saraçoglu, O. & Taşkin, O. (2018). Determination of drying parameters of peach (Prunus persica L.) pomace at different temperatures. Journal of Agricultural Machinery Science, 14, 149-156, 2018 (in Turkish).
  • Purlis, E. (2019). Modelling convective drying of foods: A multiphase porous media model considering heat of sorption. Journal of Food Engineering, 263, 132-146.
  • Ramallo, L. A., & Mascheroni, R. H. (2012). Quality evoluation of pineapple fruit during drying process. Food and Bioproducts Processing, 99, 275-283.
  • Szadzinska, J., Lectanska, J., Pashminehazar, R., Kharaghani, A. & Tsotsas, E. (2019). Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology, 37, 1–12.
  • Szulmayer, W. (1971). From sun drying to solar dehydration I. Methods and equipments. Food Technology in Australia, 23, 440-443.
  • Talih, M. & Dirim, S. N. (2018). Determination of the drying characteristics of cherry laurel (Laurocerasus officinalis Roem.) puree in a freeze-dryer. Bulgarian Chemical Communications, 50(3), 467–477. Taşova, M., Ergüneş, G., Gerçekcioglu, R. & Karagül, Ş. (2019). Konvektif ve mikrodalga yöntemlerle kurutulan kuşburnu (RosamontanaChaixsubsp. woronovii (Lonacz) Ö. Nilsson) meyvelerinde kalite değişimleri. Anadolu Journal of Agricultural Sciences, 34(3), 312-318, (in Turkish).
  • Tan, M., Chua, K. J., Mujumdar, A. S. & Chou, S. K. (2001). Effect of osmotic pre-treatment and infrared radiation of drying rate and color changes during drying of potato and pineapple. Drying Technology, 19, 2193-2207.
  • Tellez, M. C., Tellez, B. C., Navarro, J. A. A., Sierra, J. C. O. & Perez, G. A. M. (2019). Kinetics of Drying Medicinal Plants by Hybridization of Solar Technologies. Chapter Drying Unit Operations, Publisher: IntechOpen, 1-17.
  • Wang, C.Y. & Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wojdylo, A., Figiel, A., Lech, K., Nowicka, P. & Oszmianski, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. J Food Bioprocess Technol., 7, 829–841.
  • Yagcioglu, A. (1999). Drying of agricultural products. Ege University Faculty of Agriculture, Publish Number 536. Bornova, İzmir-Turkey. (in Turkish).
  • Yildiz, A. K., Tasova, M. & Polatci, H. (2019). Determination of the most appropriate thin layer curves of crocus (Crocus Spp.) plant with artificial neural networks (ANN). ICCTAFA, Congress, 11-12 July, Konya-Turkey.
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ebubekir Altuntaş This is me

Muhammed Taşova This is me

Hakan Polatcı This is me

Onur Saraçoğlu

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Altuntaş, E., Taşova, M., Polatcı, H., Saraçoğlu, O. (2022). Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits. Kastamonu University Journal of Forestry Faculty, 22(1), 24-32. https://doi.org/10.17475/kastorman.1095719
AMA Altuntaş E, Taşova M, Polatcı H, Saraçoğlu O. Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits. Kastamonu University Journal of Forestry Faculty. March 2022;22(1):24-32. doi:10.17475/kastorman.1095719
Chicago Altuntaş, Ebubekir, Muhammed Taşova, Hakan Polatcı, and Onur Saraçoğlu. “Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus Officinalis L.) Fruits”. Kastamonu University Journal of Forestry Faculty 22, no. 1 (March 2022): 24-32. https://doi.org/10.17475/kastorman.1095719.
EndNote Altuntaş E, Taşova M, Polatcı H, Saraçoğlu O (March 1, 2022) Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits. Kastamonu University Journal of Forestry Faculty 22 1 24–32.
IEEE E. Altuntaş, M. Taşova, H. Polatcı, and O. Saraçoğlu, “Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, pp. 24–32, 2022, doi: 10.17475/kastorman.1095719.
ISNAD Altuntaş, Ebubekir et al. “Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus Officinalis L.) Fruits”. Kastamonu University Journal of Forestry Faculty 22/1 (March 2022), 24-32. https://doi.org/10.17475/kastorman.1095719.
JAMA Altuntaş E, Taşova M, Polatcı H, Saraçoğlu O. Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits. Kastamonu University Journal of Forestry Faculty. 2022;22:24–32.
MLA Altuntaş, Ebubekir et al. “Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus Officinalis L.) Fruits”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, 2022, pp. 24-32, doi:10.17475/kastorman.1095719.
Vancouver Altuntaş E, Taşova M, Polatcı H, Saraçoğlu O. Effects of Genotypes and Drying Temperatures on Color and Thin Layer Drying Models of Cherry Laurel (Laurocerasus officinalis L.) Fruits. Kastamonu University Journal of Forestry Faculty. 2022;22(1):24-32.

14178  14179       14165           14166           14167            14168