Research Article
BibTex RIS Cite

Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine

Year 2022, Volume: 22 Issue: 1, 33 - 39, 31.03.2022
https://doi.org/10.17475/kastorman.1095741

Abstract

Aim of study: Relationships between moisture content and thermal conductivity and mechanical properties of wood species were examined.
Material and methods: Black Alder (Alnus glutinosa L.) and Scots Pine (Pinus sylvestris L.) specimens were used. Thermal conductivity, modulus of rupture, compression strength and impact bending strength values were determined and analyzed. All specimens were examined at 3 different moisture levels which are oven-dry, fiber saturation point (FSP) and completely wet.
Main results: The lowest thermal conductivity value was found in the perpendicular to the grain direction of oven dried Black Alder samples as 0.119 W/mK. The highest thermal conductivity value was found in the parallel direction of Scots pine samples with FSP humidity content as 0.340 W/mK. In addition, the thermal conductivity value parallel to the grain is significantly higher than perpendicular one at all three moisture levels.
Highlights: While there is a positive linear relationship between the moisture content of the wood and its dynamic bending resistance and thermal conductivity; It was found that there is a negative linear relationship between bending strength and compressive strength value.

References

  • Cengel, Y., & Ghajar, A. (2010). Heat and Mass Transfer: Fundamentals and Applications (4th Ed.). McGraw-Hill Education.
  • Desch, H. E., & Dinwoodie, J. M. (1996). Timber Structure, Properties, Conversion and Use. In Timber Structure, Properties, Conversion and Use (7th Ed.). Macmillan.
  • Dündar, T., Kurt, Ş., & As, N. (2012). Nondestructive Evaluation of Wood Strength Using Thermal Conductivity. BioResources, 7(3), 3306–3316.
  • Fu, W.-L., Guan, H.-Y., & Kei, S. (2021). Effects of Moisture Content and Grain Direction on the Elastic Properties of Beech Wood Based on Experiment and Finite Element Method. Forests, 12(5), 610. https://doi.org/10.3390/f12050610.
  • ISO 13061-17. (2017). Physical and mechanical properties of wood -- Test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to grain. International Organization for Standardization, Geneva.
  • Kabakci, A., and Kesik, H. I. (2020). "The effects of water-based insulation paint applied to laminate flooring panels on the thermal conductivity coefficient and adhesion resistance," BioRes. 15(3), 6110-6122.
  • KEM Kyoto Electronic Manufacturing. (2020). Quick Thermal Conductivity Meter QTM 500 Operating Manual. http://www.kyoto-kem.com/en/pdf/catalog/QTM-500.pdf
  • Kollmann, F., & Cote, W. A. (1968). Principles of Wood Science and Technology. Springer-Verlag Berlin Heidelberg.
  • Kreith, F., & Black, W. Z. (1980). Basic heat transfer. Harper & Row.
  • Kurt, S., Uysal, B., & Özcan, C. (2008). Effect of adhesives on thermal conductivity of laminated veneer lumber. Journal of Applied Polymer Science, 110(3), 1822–1827.
  • Li, Z., Jiang, J., & Lu, J. (2018). Moisture-dependent orthotropic elasticity of beech wood. Journal of Wood Science., 64(5), 927–938. https://doi.org/10.1007/s00107-017-1166-y
  • Özcan, C., & Korkmaz, M. (2018). Relationship Between the Thermal Conductivity and Mechanical Properties of Uludağ Fir and Black Poplar. BioResources, 13(4), 8143–8154.
  • Parrott, J. E., & Stuckes, A. D. (1975). Thermal Conductivity of Solids. Pion Publishing.
  • Roszyk, E., Stachowska, E., Majka, J., Mania, P., & Broda, M. (2020). Moisture-dependent strength properties of thermally-modified Fraxinus excelsior wood in compression. Materials, 13(7), 1–12. https://doi.org/10.3390/ma13071647
  • Simpson, W., & TenWolde, A. (1999). Physical properties and moisture relations of wood. In Wood handbook: wood as an engineering material (pp. 3.1-3.24). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Skaar, C. (1984). Wood-Water Relationships. In R. Rowell (Ed.), The Chemistry of Solid Wood (pp. 127–172). ACS Publications.
  • Suleiman, B. M., Larfeldt, J., Leckner, B., & Gustavsson, M. (1999). Thermal conductivity and diffusivity of wood. Wood Science and Technology, 33(6), 465–473.
  • Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., & Ajzoul, T. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood-concrete composite. Construction and Building Materials, 48, 104–115.
  • TS 2471. (1976). Wood, Determination of Moisture Content for Physical and Mechanical Tests. Turkish Standards Institue, Ankara.
  • TS 2472. (1976). Wood - Determination of Density for Physical and Mechanical Tests. Turkish Standards Institue, Ankara.
  • TS 2474. (1976). Wood - Determination of Ultimate Strength in Static Bending. Turkish Standards Institue, Ankara.
  • TS 2477. (1976). Wood-Determination of Impact Bending Strength. Turkish Standards Institue, Ankara.
  • Tsoumis, G. (1968). Wood as Raw Material. Source, Structure, Chemical Composition, Growth, Degradation and Identification. Pergamon.
  • Winandy, J. E., & Rowell, R. M. (1984). The Chemistry of Wood Strength. 211–255.
  • Y. Aydın, T., & Ozveren, A. (2019). Effects of moisture content on elastic constants of fir wood. European Journal of Wood and Wood Products, 77(1), 63–70. https://doi.org/10.1007/s00107-018-1363-3
  • Yang, N., & Zhang, L. (2018). Investigation of elastic constants and ultimate strengths of Korean pine from compression and tension tests. Journal of Wood Science, 64(2), 85–96. https://doi.org/10.1007/s10086-017-1671-y
  • Zhong, W., Song, S., Huang, X., Hao, Z., Xie, R., & Chen, G. (2011). Research on static and dynamic mechanical properties of spruce wood by three loading directions. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 43(6), 1141–1150.

Kızılağaç ve Sarıçam Odununun Isıl İletkenliği ve Mekanik Özellikleri Üzerine Rutubet Miktarı ve Lif Yönünün Etkileri

Year 2022, Volume: 22 Issue: 1, 33 - 39, 31.03.2022
https://doi.org/10.17475/kastorman.1095741

Abstract

Çalışmanın amacı: Çalışmada, ağaç malzemenin sahip olduğu nem içeriği ile ısıl iletkenliği ve mekanik özellikleri arasındaki ilişkiler incelenmiştir.
Malzeme ve yöntem: Testlerde kızılağaç (Alnus Glutinosa L.) ve sarıçam (Pinus Sylvestris L.) odunlarından elde edilen örnekler kullanılmıştır. Isıl iletkenlik, eğilme direnci, basınç direnci ve dinamik eğilme (şok) direnci değerleri belirlenmiş ve analiz edilmiştir. Tüm numuneler tam kuru, lif doygunluğu noktası ve tamamen yaş olmak üzere 3 farklı nem seviyesinde incelenmiştir.
Temel bulgular: En düşük ısıl iletkenlik değeri, 0.119 W/mK ile tam kuru haldeki kızılağaç örneklerin örneklerinin liflere dik olarak yapılan ölçümlerinden elde edilmiştir. En yüksek ısıl iletkenlik değeri ise, 0.340 W/mK ile lif doygunluğu rutubetine sahip sarıçam örneklerinde liflere paralel yönde bulunmuştur. Ayrıca, liflere paralel ısıl iletkenlik değeri, her üç nem seviyesinde de dik olandan önemli ölçüde daha yüksek bulunmuştur.
Araştırma vurguları: Ağaç malzemenin nem içeriği ile dinamik eğilme direnci ve ısıl iletkenliği arasında pozitif doğrusal; eğilme direnci ve basınç direnci değeri arasında ise negatif doğrusal bir ilişki olduğu bulunmuştur.

References

  • Cengel, Y., & Ghajar, A. (2010). Heat and Mass Transfer: Fundamentals and Applications (4th Ed.). McGraw-Hill Education.
  • Desch, H. E., & Dinwoodie, J. M. (1996). Timber Structure, Properties, Conversion and Use. In Timber Structure, Properties, Conversion and Use (7th Ed.). Macmillan.
  • Dündar, T., Kurt, Ş., & As, N. (2012). Nondestructive Evaluation of Wood Strength Using Thermal Conductivity. BioResources, 7(3), 3306–3316.
  • Fu, W.-L., Guan, H.-Y., & Kei, S. (2021). Effects of Moisture Content and Grain Direction on the Elastic Properties of Beech Wood Based on Experiment and Finite Element Method. Forests, 12(5), 610. https://doi.org/10.3390/f12050610.
  • ISO 13061-17. (2017). Physical and mechanical properties of wood -- Test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to grain. International Organization for Standardization, Geneva.
  • Kabakci, A., and Kesik, H. I. (2020). "The effects of water-based insulation paint applied to laminate flooring panels on the thermal conductivity coefficient and adhesion resistance," BioRes. 15(3), 6110-6122.
  • KEM Kyoto Electronic Manufacturing. (2020). Quick Thermal Conductivity Meter QTM 500 Operating Manual. http://www.kyoto-kem.com/en/pdf/catalog/QTM-500.pdf
  • Kollmann, F., & Cote, W. A. (1968). Principles of Wood Science and Technology. Springer-Verlag Berlin Heidelberg.
  • Kreith, F., & Black, W. Z. (1980). Basic heat transfer. Harper & Row.
  • Kurt, S., Uysal, B., & Özcan, C. (2008). Effect of adhesives on thermal conductivity of laminated veneer lumber. Journal of Applied Polymer Science, 110(3), 1822–1827.
  • Li, Z., Jiang, J., & Lu, J. (2018). Moisture-dependent orthotropic elasticity of beech wood. Journal of Wood Science., 64(5), 927–938. https://doi.org/10.1007/s00107-017-1166-y
  • Özcan, C., & Korkmaz, M. (2018). Relationship Between the Thermal Conductivity and Mechanical Properties of Uludağ Fir and Black Poplar. BioResources, 13(4), 8143–8154.
  • Parrott, J. E., & Stuckes, A. D. (1975). Thermal Conductivity of Solids. Pion Publishing.
  • Roszyk, E., Stachowska, E., Majka, J., Mania, P., & Broda, M. (2020). Moisture-dependent strength properties of thermally-modified Fraxinus excelsior wood in compression. Materials, 13(7), 1–12. https://doi.org/10.3390/ma13071647
  • Simpson, W., & TenWolde, A. (1999). Physical properties and moisture relations of wood. In Wood handbook: wood as an engineering material (pp. 3.1-3.24). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Skaar, C. (1984). Wood-Water Relationships. In R. Rowell (Ed.), The Chemistry of Solid Wood (pp. 127–172). ACS Publications.
  • Suleiman, B. M., Larfeldt, J., Leckner, B., & Gustavsson, M. (1999). Thermal conductivity and diffusivity of wood. Wood Science and Technology, 33(6), 465–473.
  • Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., & Ajzoul, T. (2013). Moisture content influence on the thermal conductivity and diffusivity of wood-concrete composite. Construction and Building Materials, 48, 104–115.
  • TS 2471. (1976). Wood, Determination of Moisture Content for Physical and Mechanical Tests. Turkish Standards Institue, Ankara.
  • TS 2472. (1976). Wood - Determination of Density for Physical and Mechanical Tests. Turkish Standards Institue, Ankara.
  • TS 2474. (1976). Wood - Determination of Ultimate Strength in Static Bending. Turkish Standards Institue, Ankara.
  • TS 2477. (1976). Wood-Determination of Impact Bending Strength. Turkish Standards Institue, Ankara.
  • Tsoumis, G. (1968). Wood as Raw Material. Source, Structure, Chemical Composition, Growth, Degradation and Identification. Pergamon.
  • Winandy, J. E., & Rowell, R. M. (1984). The Chemistry of Wood Strength. 211–255.
  • Y. Aydın, T., & Ozveren, A. (2019). Effects of moisture content on elastic constants of fir wood. European Journal of Wood and Wood Products, 77(1), 63–70. https://doi.org/10.1007/s00107-018-1363-3
  • Yang, N., & Zhang, L. (2018). Investigation of elastic constants and ultimate strengths of Korean pine from compression and tension tests. Journal of Wood Science, 64(2), 85–96. https://doi.org/10.1007/s10086-017-1671-y
  • Zhong, W., Song, S., Huang, X., Hao, Z., Xie, R., & Chen, G. (2011). Research on static and dynamic mechanical properties of spruce wood by three loading directions. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 43(6), 1141–1150.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şeref Kurt This is me

Mustafa Korkmaz This is me

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Kurt, Ş., & Korkmaz, M. (2022). Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine. Kastamonu University Journal of Forestry Faculty, 22(1), 33-39. https://doi.org/10.17475/kastorman.1095741
AMA Kurt Ş, Korkmaz M. Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine. Kastamonu University Journal of Forestry Faculty. March 2022;22(1):33-39. doi:10.17475/kastorman.1095741
Chicago Kurt, Şeref, and Mustafa Korkmaz. “Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine”. Kastamonu University Journal of Forestry Faculty 22, no. 1 (March 2022): 33-39. https://doi.org/10.17475/kastorman.1095741.
EndNote Kurt Ş, Korkmaz M (March 1, 2022) Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine. Kastamonu University Journal of Forestry Faculty 22 1 33–39.
IEEE Ş. Kurt and M. Korkmaz, “Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, pp. 33–39, 2022, doi: 10.17475/kastorman.1095741.
ISNAD Kurt, Şeref - Korkmaz, Mustafa. “Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine”. Kastamonu University Journal of Forestry Faculty 22/1 (March 2022), 33-39. https://doi.org/10.17475/kastorman.1095741.
JAMA Kurt Ş, Korkmaz M. Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine. Kastamonu University Journal of Forestry Faculty. 2022;22:33–39.
MLA Kurt, Şeref and Mustafa Korkmaz. “Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 1, 2022, pp. 33-39, doi:10.17475/kastorman.1095741.
Vancouver Kurt Ş, Korkmaz M. Effects of Moisture and Direction of Grain on the Thermal Conductivity and Mechanical Properties of Black Alder and Scots Pine. Kastamonu University Journal of Forestry Faculty. 2022;22(1):33-9.

14178  14179       14165           14166           14167            14168