Research Article
BibTex RIS Cite

Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level

Year 2022, Volume: 22 Issue: 2, 85 - 93, 27.09.2022
https://doi.org/10.17475/kastorman.1178865

Abstract

Aim of study: It is very important to design office furniture based on the anthropometry of employees because it affects their comfort, performance, and in serious cases, their health. Adjustable chairs are typically designed for a certain percentile of the user population. However, this design approach may not provide an accommodation level as intended because a chair has more than one design dimension. The objective of this study is to compare the percentile-based design approach and subject-based design approach by accommodation level.
Material and methods: A sample of 4.082 males from the 2012 ANSUR II database was used to compare two design approaches by accommodation level. An adjustable office chair was designed to investigate whether or not the final accommodation level differed from the desired accommodation level. Using four anthropometric measurements, the lower and upper limits for four chair dimensions are calculated to cover 95% of users.
Main results: The anthropometric measurements of a total of 728 subjects (17.83%) did not match for at least one chair dimension, resulting in the adjustable chair accommodating 82.17% of users, rather than 95% as intended. Two additional chair dimensions (backrest height and width) reduced the accommodation level to 77.36%.
Highlights: Considering that eleven different chair dimensions are considered in a typical chair design, it is reasonable to assume that the accommodation level will be even lower.

References

  • Afzan, Z.Z., Hadi, S.A., Shamsul, B.T., Castellucci, H.I., Nada, I. & Rahmah, A.R.S. (2012). Mismatch between school furniture and anthropometric measures among primary school children in Mersing, Johor, Malaysia. 2012 Southeast Asian Network of Ergonomics Societies Conference (SEANES), 1-5. https://doi.org/10.1109/SEANES.2012.6299557
  • Agha, S.R. (2010). School furniture match to students’ anthropometry in the Gaza Strip. Ergonomics, 53(3), 344-354. https://doi.org/10.1080/00140130903398366
  • Baharampour, S., Nazari, J., Dianat, I. & Asgharijafarabadi, M. (2013). Student’s Body Dimensions in Relation to Classroom Furniture. Health Promotion Perspectives, 32, 165-174.
  • Branton, P. (1984). Backshapes of seated persons—How close can the interface be designed? Applied Ergonomics, 15(2), 105-107. https://doi.org/10.1016/0003-6870(84)90280-1
  • Castellucci, H.I., Arezes, P.M. & Viviani, C.A. (2010). Mismatch between classroom furniture and anthropometric measures in Chilean schools. Special Section - The First International Symposium on Visually Induced Motion Sickness, Fatigue, and Photosensitive Epileptic Seizures (VIMS2007), 41(4), 563-568. https://doi.org/10.1016/j.apergo.2009.12.001
  • Castellucci, I., Arezes, P.M., Molenbroek, J., de Bruin, R. & Viviani, C. (2016). The influence of school furniture on students’ performance and physical responses: Results of a systematic review. Ergonomics, 60. https://doi.org/10.1080/00140139.2016.1170889
  • Castellucci, I., Gonçalves, M. & Arezes, P.M. (2010). Ergonomic design of school furniture: Challenges for the Portuguese schools (p. Castellucci, H.I., (2010). Chapter 68: Ergonomic design of school furniture: Challenges for the Portuguese schools.(Eds.). Advances in Occupational, Social, and Organizational Ergonomics. Taylor&Fr).
  • Chaffin, D.B., Andersson, G.B.J. & Martin, B.J. (1999). Occupational Biomechanics. Wiley.
  • Dalager, T., Jensen, P.T., Winther, T.S., Savarimuthu, T.R., Markauskas, A., Mogensen, O. & Søgaard, K. (2019). Surgeons’ muscle load during robotic-assisted laparoscopy performed with a regular office chair and the preferred of two ergonomic chairs: A pilot study. Applied Ergonomics, 78, 286-292. https://doi.org/10.1016/j.apergo.2018.03.016
  • Dianat, I., Karimi, M.A., Asl Hashemi, A. & Bahrampour, S. (2013). Classroom furniture and anthropometric characteristics of Iranian high school students: Proposed dimensions based on anthropometric data. Applied Ergonomics, 44(1), 101-108. https://doi.org/10.1016/j.apergo.2012.05.004
  • Gordon, C.C., Blackwell, C.L., Bradtmiller, B., Parham, J.L., Barrientos, P., Paquette, S.P., Corner, B.D., Carson, J.M., Venezia, J.C., Rockwell, B.M., Mucher, M. & Kristensen, S. (2014). 2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics (Technical Report NATICK/TR-15/007; ANSUR II). U.S. Army Natick Soldier Research, Development and Engineering Center.
  • Gouvali, M. & Boudolos, K. (2006). Match between school furniture dimensions and children’s anthropometry. Applied Ergonomics, 37, 765-773. https://doi.org/10.1016/j.apergo.2005.11.009
  • Grimes, P. & Legg, S. (2004). Musculoskeletal Disorders (MSD) in School Students as a Risk Factor for Adult MSD: A Review of the Multiple Factors Affecting Posture, Comfort and Health in Classroom Environments. Journal of The Human-Environment System, 7, 1-9. https://doi.org/10.1618/jhes.7.1
  • Harrison, D.D., Harrison, S.O., Croft, A.C., Harrison, D.E. & Troyanovich, S.J. (1999). Sitting biomechanics part I: review of the literature. Journal of Manipulative and Physiological Therapeutics, 22(9), 594-609. https://doi.org/10.1016/s0161-4754(99)70020-5
  • Hoque, A.S.M., Parvez, M.S., Halder, P.K. & Szecsi, T. (2014). Ergonomic design of classroom furniture for university students of Bangladesh. Journal of Industrial and Production Engineering, 31(5), 239-252.
  • Ismaila, S.O., Akanbi, O.G., Oderinu, S.O., Anyanwu, B.U. & Alamu, K.O. (2015). Design of ergonomically compliant desks and chairs for primary pupils in Ibadan, Nigeria. Journal of Engineering Science and Technology, 10(1), 35-46. Scopus.
  • Ivelic, Z., Grbac, I., Ljuljka, B. & Tkalec, S. (2002). Office Furniture Design According to a Human Anthropometric Data. Proceedings of DESIGN 2002, 791-796.
  • Kalurkar, S.V. & Salunke, P.V. (n.d.). Evaluation of Classroom Furniture from Ergonomic Design Considerations. International Journal of Engineering Research and Technology, ICIATE 2017 Conference Proceeding, Special Issue, 1-8.
  • Kelly, C.L. (2005). The Beauty of Fit: Proportion and Anthropometry in Chair Design. Georgia Institute of Technology.
  • Kothiyal, K. & Tettey, S. (2001). Anthropometry for Design for the Elderly. International Journal of Occupational Safety and Ergonomics, 7(1), 15-34. https://doi.org/10.1080/10803548.2001.11076474
  • Kroemer, K.H.E., Kroemer, H.B., & Kroemer-Elbert, K.E. (2001). Ergonomics: How to Design for Ease and Efficiency. Prentice Hall.
  • Lee, J., Cho, N., Yun, M.H. & Lee, Y. (2020). Data-Driven Design Solution of a Mismatch Problem between the Specifications of the Multi-Function Console in a Jangbogo Class Submarine and the Anthropometric Dimensions of South Koreans Users. Applied Sciences, 10(1). https://doi.org/10.3390/app10010415
  • Molenbroek, J.F.M., Kroon-Ramaekers, Y.M.T. & Snijders, C.J. (2003). Revision of the design of a standard for the dimensions of school furniture. Ergonomics, 46(7), 681-694. https://doi.org/10.1080/0014013031000085635
  • Nelson, N.A. & Silverstein, B.A. (1998). Workplace Changes Associated with a Reduction in Musculoskeletal Symptoms in Office Workers. Human Factors, 40(2), 337-350. https://doi.org/10.1518/001872098779480398
  • Nijholt, N., Tuinhof, T., Bouwens, J.M.A., Schultheis, U. & Vink, P. (2016). An estimation of the human head, neck and back contour in an aircraft seat. Work (Reading, Mass.), 54(4), 913-923. https://doi.org/10.3233/WOR-162355
  • Noshin, L., Sen Gupta, H. & Kibria, Md. G. (2018). Office chair design: A systematic approach of ergonomic design based on the anthropometric measurement of Bangladeshi people. International Journal of Research in Industrial Engineering, 7(2), 224-234. https://doi.org/10.22105/riej.2018.128451.1040
  • Parcells, C., Stommel, M. & Hubbard, R.P. (1999). Mismatch of classroom furniture and student body dimensions: Empirical findings and health implications. Journal of Adolescent Health, 24(4), 265-273. ScienceDirect.
  • Parvez, M.S., Parvin, F., Shahriar, M.M. & Kibria, G. (2018). Design of Ergonomically Fit Classroom Furniture for Primary Schools of Bangladesh. Journal of Engineering, 2018, 3543610. https://doi.org/10.1155/2018/3543610
  • Pheasant, S. (1984). Anthropometrics: An Introduction for Schools and Colleges. British Standards Institution.
  • Pynt, J., Higgs, J. & Mackey, M. (2001). Seeking the Optimal Posture of the Seated Lumbar Spine. Physiotherapy Theory and Practice, 17, 5. https://doi.org/10.1080/09593980151143228
  • Qutubuddin, S.M., Hebbal, S.S. & Kumar, A.C. S. (2013). Anthropometric Consideration for Designing Students Desks in Engineering Colleges. International Journal of Current Engineering and Technology, 3, 1179-1185.
  • Robertson, M., Amick, B.C. 3rd, DeRango, K., Rooney, T., Bazzani, L., Harrist, R. & Moore, A. (2009). The effects of an office ergonomics training and chair intervention on worker knowledge, behavior and musculoskeletal risk. Applied Ergonomics, 40(1), 124-135. https://doi.org/10.1016/j.apergo.2007.12.009
  • Robertson, M. & Michael O’Neill. (1999). Effects of Environmental Control on Stress, Performance and Group Effectiveness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 43(8), 552-556. https://doi.org/10.1177/154193129904300801
  • Roossien, C.C., Stegenga, J., Hodselmans, A.P., Spook, S.M., Koolhaas, W., Brouwer, S., Verkerke, G.J. & Reneman, M.F. (2017). Can a smart chair improve the sitting behavior of office workers? Applied Ergonomics, 65, 355-361. https://doi.org/10.1016/j.apergo.2017.07.012
  • Saes, M., Ribeiro, C. & Muccillo-Baisch, A.L. (2015). Prevalence of musculoskeletal pain and its association with inadequate school furniture. Revista Dor, 16(2), 124-128.
  • Taifa, I.W. & Desai, D.A. (2017). Anthropometric measurements for ergonomic design of students’ furniture in India. Engineering Science and Technology, an International Journal, 20(1), 232-239. https://doi.org/10.1016/j.jestch.2016.08.004
  • Triglav, J., Howe, E., Cheema, J., Dube, B., Fenske, M.J., Strzalkowski, N. & Bent, L. (2019). Physiological and cognitive measures during prolonged sitting: Comparisons between a standard and multi-axial office chair. Applied Ergonomics, 78, 176-183. https://doi.org/10.1016/j.apergo.2019.03.002
  • van Dieën, J.H., de Looze, M.P. & Hermans, V. (2001). Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics, 44(7), 739-750. https://doi.org/10.1080/00140130120297
  • van Niekerk, S.-M., Louw, Q.A., Grimmer-Somers, K., Harvey, J. & Hendry, K.J. (2013). The anthropometric match between high school learners of the Cape Metropole area, Western Cape, South Africa and their computer workstation at school. Applied Ergonomics, 44(3), 366-371. https://doi.org/10.1016/j.apergo.2012.09.008
  • Wang, X., Cardoso, M., & Beurier, G. (2018). Effects of seat parameters and sitters’ anthropometric dimensions on seat profile and optimal compressed seat pan surface. Applied Ergonomics, 73, 13-21. https://doi.org/10.1016/j.apergo.2018.05.015
  • Winkel, J. & Jorgensen, K. (1986). Evaluation of foot swelling and lower-limb temperatures in relation to leg activity during long-term seated office work. Ergonomics, 29(2), 313-328.
  • Yanto, Lu, C.-W. & Lu, J.-M. (2017). Evaluation of the Indonesian National Standard for elementary school furniture based on children’s anthropometry. Applied Ergonomics, 62, 168-181. https://doi.org/10.1016/j.apergo.2017.03.004
  • Zemp, R., Taylor, W.R. & Lorenzetti, S. (2015). Are pressure measurements effective in the assessment of office chair comfort/discomfort? A review. Applied Ergonomics, 48, 273-282. https://doi.org/10.1016/j.apergo.2014.12.010

Ofis Sandalyeleri için Ergonomik Tasarım Yaklaşımlarının Uygunluk Seviyelerine Göre Karşılaştırılması

Year 2022, Volume: 22 Issue: 2, 85 - 93, 27.09.2022
https://doi.org/10.17475/kastorman.1178865

Abstract

Çalışmanın amacı: Ofis mobilyalarının çalışanların antropometrisine dayalı olarak tasarlanması, konforlarını, performanslarını ve ciddi durumlarda sağlıklarını etkilediği için çok önemlidir. Ayarlanabilen sandalyeler, tipik olarak kullanıcı popülasyonunun belirli bir yüzdesi için tasarlanır. Ancak bu tasarım yaklaşımı, bir sandalyenin birden fazla tasarım boyutuna sahip olması nedeniyle amaçlandığı gibi bir uygunluk seviyesi sağlamayabilir. Bu çalışmanın amacı, yüzdelik-temelli tasarım yaklaşımı ile kişi-temelli tasarım yaklaşımını uygunluk seviyelerine göre karşılaştırmaktır.
Materyal ve yöntem: 2012 ANSUR II veri tabanından 4.082 erkekten oluşan bir örneklem, iki tasarım yaklaşımını uygunluk seviyesine göre karşılaştırmak için kullanılmıştır. Nihai uygunluk seviyesinin istenen uygunluk seviyesinden farklı olup olmadığını araştırmak için ayarlanabilir bir ofis koltuğu tasarlanmıştır. Dört antropometrik ölçü kullanılarak, dört sandalye boyutu için alt ve üst sınırlar, kullanıcıların %95'ini kapsayacak şekilde hesaplanmıştır.
Temel sonuçlar: Toplam 728 deneğin antropometrik ölçüleri (%17.83), en az bir sandalye boyutu için eşleşmemiştir ve ayarlanabilir sandalyenin, amaçlandığı gibi %95 yerine kullanıcıların %82.17'sine uygun olduğu tespit edilmiştir. İki ilave sandalye boyutu (sırtlık yüksekliği ve genişliği) ise uygunluk seviyesini %77.36'ya düşürmüştür.
Araştırma vurguları: Tipik bir sandalye tasarımında on bir farklı sandalye boyutunun dikkate alındığı düşünüldüğünde, uygunluk seviyesinin daha da düşük olacağını varsaymak gerekir.

References

  • Afzan, Z.Z., Hadi, S.A., Shamsul, B.T., Castellucci, H.I., Nada, I. & Rahmah, A.R.S. (2012). Mismatch between school furniture and anthropometric measures among primary school children in Mersing, Johor, Malaysia. 2012 Southeast Asian Network of Ergonomics Societies Conference (SEANES), 1-5. https://doi.org/10.1109/SEANES.2012.6299557
  • Agha, S.R. (2010). School furniture match to students’ anthropometry in the Gaza Strip. Ergonomics, 53(3), 344-354. https://doi.org/10.1080/00140130903398366
  • Baharampour, S., Nazari, J., Dianat, I. & Asgharijafarabadi, M. (2013). Student’s Body Dimensions in Relation to Classroom Furniture. Health Promotion Perspectives, 32, 165-174.
  • Branton, P. (1984). Backshapes of seated persons—How close can the interface be designed? Applied Ergonomics, 15(2), 105-107. https://doi.org/10.1016/0003-6870(84)90280-1
  • Castellucci, H.I., Arezes, P.M. & Viviani, C.A. (2010). Mismatch between classroom furniture and anthropometric measures in Chilean schools. Special Section - The First International Symposium on Visually Induced Motion Sickness, Fatigue, and Photosensitive Epileptic Seizures (VIMS2007), 41(4), 563-568. https://doi.org/10.1016/j.apergo.2009.12.001
  • Castellucci, I., Arezes, P.M., Molenbroek, J., de Bruin, R. & Viviani, C. (2016). The influence of school furniture on students’ performance and physical responses: Results of a systematic review. Ergonomics, 60. https://doi.org/10.1080/00140139.2016.1170889
  • Castellucci, I., Gonçalves, M. & Arezes, P.M. (2010). Ergonomic design of school furniture: Challenges for the Portuguese schools (p. Castellucci, H.I., (2010). Chapter 68: Ergonomic design of school furniture: Challenges for the Portuguese schools.(Eds.). Advances in Occupational, Social, and Organizational Ergonomics. Taylor&Fr).
  • Chaffin, D.B., Andersson, G.B.J. & Martin, B.J. (1999). Occupational Biomechanics. Wiley.
  • Dalager, T., Jensen, P.T., Winther, T.S., Savarimuthu, T.R., Markauskas, A., Mogensen, O. & Søgaard, K. (2019). Surgeons’ muscle load during robotic-assisted laparoscopy performed with a regular office chair and the preferred of two ergonomic chairs: A pilot study. Applied Ergonomics, 78, 286-292. https://doi.org/10.1016/j.apergo.2018.03.016
  • Dianat, I., Karimi, M.A., Asl Hashemi, A. & Bahrampour, S. (2013). Classroom furniture and anthropometric characteristics of Iranian high school students: Proposed dimensions based on anthropometric data. Applied Ergonomics, 44(1), 101-108. https://doi.org/10.1016/j.apergo.2012.05.004
  • Gordon, C.C., Blackwell, C.L., Bradtmiller, B., Parham, J.L., Barrientos, P., Paquette, S.P., Corner, B.D., Carson, J.M., Venezia, J.C., Rockwell, B.M., Mucher, M. & Kristensen, S. (2014). 2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics (Technical Report NATICK/TR-15/007; ANSUR II). U.S. Army Natick Soldier Research, Development and Engineering Center.
  • Gouvali, M. & Boudolos, K. (2006). Match between school furniture dimensions and children’s anthropometry. Applied Ergonomics, 37, 765-773. https://doi.org/10.1016/j.apergo.2005.11.009
  • Grimes, P. & Legg, S. (2004). Musculoskeletal Disorders (MSD) in School Students as a Risk Factor for Adult MSD: A Review of the Multiple Factors Affecting Posture, Comfort and Health in Classroom Environments. Journal of The Human-Environment System, 7, 1-9. https://doi.org/10.1618/jhes.7.1
  • Harrison, D.D., Harrison, S.O., Croft, A.C., Harrison, D.E. & Troyanovich, S.J. (1999). Sitting biomechanics part I: review of the literature. Journal of Manipulative and Physiological Therapeutics, 22(9), 594-609. https://doi.org/10.1016/s0161-4754(99)70020-5
  • Hoque, A.S.M., Parvez, M.S., Halder, P.K. & Szecsi, T. (2014). Ergonomic design of classroom furniture for university students of Bangladesh. Journal of Industrial and Production Engineering, 31(5), 239-252.
  • Ismaila, S.O., Akanbi, O.G., Oderinu, S.O., Anyanwu, B.U. & Alamu, K.O. (2015). Design of ergonomically compliant desks and chairs for primary pupils in Ibadan, Nigeria. Journal of Engineering Science and Technology, 10(1), 35-46. Scopus.
  • Ivelic, Z., Grbac, I., Ljuljka, B. & Tkalec, S. (2002). Office Furniture Design According to a Human Anthropometric Data. Proceedings of DESIGN 2002, 791-796.
  • Kalurkar, S.V. & Salunke, P.V. (n.d.). Evaluation of Classroom Furniture from Ergonomic Design Considerations. International Journal of Engineering Research and Technology, ICIATE 2017 Conference Proceeding, Special Issue, 1-8.
  • Kelly, C.L. (2005). The Beauty of Fit: Proportion and Anthropometry in Chair Design. Georgia Institute of Technology.
  • Kothiyal, K. & Tettey, S. (2001). Anthropometry for Design for the Elderly. International Journal of Occupational Safety and Ergonomics, 7(1), 15-34. https://doi.org/10.1080/10803548.2001.11076474
  • Kroemer, K.H.E., Kroemer, H.B., & Kroemer-Elbert, K.E. (2001). Ergonomics: How to Design for Ease and Efficiency. Prentice Hall.
  • Lee, J., Cho, N., Yun, M.H. & Lee, Y. (2020). Data-Driven Design Solution of a Mismatch Problem between the Specifications of the Multi-Function Console in a Jangbogo Class Submarine and the Anthropometric Dimensions of South Koreans Users. Applied Sciences, 10(1). https://doi.org/10.3390/app10010415
  • Molenbroek, J.F.M., Kroon-Ramaekers, Y.M.T. & Snijders, C.J. (2003). Revision of the design of a standard for the dimensions of school furniture. Ergonomics, 46(7), 681-694. https://doi.org/10.1080/0014013031000085635
  • Nelson, N.A. & Silverstein, B.A. (1998). Workplace Changes Associated with a Reduction in Musculoskeletal Symptoms in Office Workers. Human Factors, 40(2), 337-350. https://doi.org/10.1518/001872098779480398
  • Nijholt, N., Tuinhof, T., Bouwens, J.M.A., Schultheis, U. & Vink, P. (2016). An estimation of the human head, neck and back contour in an aircraft seat. Work (Reading, Mass.), 54(4), 913-923. https://doi.org/10.3233/WOR-162355
  • Noshin, L., Sen Gupta, H. & Kibria, Md. G. (2018). Office chair design: A systematic approach of ergonomic design based on the anthropometric measurement of Bangladeshi people. International Journal of Research in Industrial Engineering, 7(2), 224-234. https://doi.org/10.22105/riej.2018.128451.1040
  • Parcells, C., Stommel, M. & Hubbard, R.P. (1999). Mismatch of classroom furniture and student body dimensions: Empirical findings and health implications. Journal of Adolescent Health, 24(4), 265-273. ScienceDirect.
  • Parvez, M.S., Parvin, F., Shahriar, M.M. & Kibria, G. (2018). Design of Ergonomically Fit Classroom Furniture for Primary Schools of Bangladesh. Journal of Engineering, 2018, 3543610. https://doi.org/10.1155/2018/3543610
  • Pheasant, S. (1984). Anthropometrics: An Introduction for Schools and Colleges. British Standards Institution.
  • Pynt, J., Higgs, J. & Mackey, M. (2001). Seeking the Optimal Posture of the Seated Lumbar Spine. Physiotherapy Theory and Practice, 17, 5. https://doi.org/10.1080/09593980151143228
  • Qutubuddin, S.M., Hebbal, S.S. & Kumar, A.C. S. (2013). Anthropometric Consideration for Designing Students Desks in Engineering Colleges. International Journal of Current Engineering and Technology, 3, 1179-1185.
  • Robertson, M., Amick, B.C. 3rd, DeRango, K., Rooney, T., Bazzani, L., Harrist, R. & Moore, A. (2009). The effects of an office ergonomics training and chair intervention on worker knowledge, behavior and musculoskeletal risk. Applied Ergonomics, 40(1), 124-135. https://doi.org/10.1016/j.apergo.2007.12.009
  • Robertson, M. & Michael O’Neill. (1999). Effects of Environmental Control on Stress, Performance and Group Effectiveness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 43(8), 552-556. https://doi.org/10.1177/154193129904300801
  • Roossien, C.C., Stegenga, J., Hodselmans, A.P., Spook, S.M., Koolhaas, W., Brouwer, S., Verkerke, G.J. & Reneman, M.F. (2017). Can a smart chair improve the sitting behavior of office workers? Applied Ergonomics, 65, 355-361. https://doi.org/10.1016/j.apergo.2017.07.012
  • Saes, M., Ribeiro, C. & Muccillo-Baisch, A.L. (2015). Prevalence of musculoskeletal pain and its association with inadequate school furniture. Revista Dor, 16(2), 124-128.
  • Taifa, I.W. & Desai, D.A. (2017). Anthropometric measurements for ergonomic design of students’ furniture in India. Engineering Science and Technology, an International Journal, 20(1), 232-239. https://doi.org/10.1016/j.jestch.2016.08.004
  • Triglav, J., Howe, E., Cheema, J., Dube, B., Fenske, M.J., Strzalkowski, N. & Bent, L. (2019). Physiological and cognitive measures during prolonged sitting: Comparisons between a standard and multi-axial office chair. Applied Ergonomics, 78, 176-183. https://doi.org/10.1016/j.apergo.2019.03.002
  • van Dieën, J.H., de Looze, M.P. & Hermans, V. (2001). Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics, 44(7), 739-750. https://doi.org/10.1080/00140130120297
  • van Niekerk, S.-M., Louw, Q.A., Grimmer-Somers, K., Harvey, J. & Hendry, K.J. (2013). The anthropometric match between high school learners of the Cape Metropole area, Western Cape, South Africa and their computer workstation at school. Applied Ergonomics, 44(3), 366-371. https://doi.org/10.1016/j.apergo.2012.09.008
  • Wang, X., Cardoso, M., & Beurier, G. (2018). Effects of seat parameters and sitters’ anthropometric dimensions on seat profile and optimal compressed seat pan surface. Applied Ergonomics, 73, 13-21. https://doi.org/10.1016/j.apergo.2018.05.015
  • Winkel, J. & Jorgensen, K. (1986). Evaluation of foot swelling and lower-limb temperatures in relation to leg activity during long-term seated office work. Ergonomics, 29(2), 313-328.
  • Yanto, Lu, C.-W. & Lu, J.-M. (2017). Evaluation of the Indonesian National Standard for elementary school furniture based on children’s anthropometry. Applied Ergonomics, 62, 168-181. https://doi.org/10.1016/j.apergo.2017.03.004
  • Zemp, R., Taylor, W.R. & Lorenzetti, S. (2015). Are pressure measurements effective in the assessment of office chair comfort/discomfort? A review. Applied Ergonomics, 48, 273-282. https://doi.org/10.1016/j.apergo.2014.12.010
There are 43 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Celal Güngör

Early Pub Date September 24, 2022
Publication Date September 27, 2022
Published in Issue Year 2022 Volume: 22 Issue: 2

Cite

APA Güngör, C. (2022). Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level. Kastamonu University Journal of Forestry Faculty, 22(2), 85-93. https://doi.org/10.17475/kastorman.1178865
AMA Güngör C. Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level. Kastamonu University Journal of Forestry Faculty. September 2022;22(2):85-93. doi:10.17475/kastorman.1178865
Chicago Güngör, Celal. “Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level”. Kastamonu University Journal of Forestry Faculty 22, no. 2 (September 2022): 85-93. https://doi.org/10.17475/kastorman.1178865.
EndNote Güngör C (September 1, 2022) Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level. Kastamonu University Journal of Forestry Faculty 22 2 85–93.
IEEE C. Güngör, “Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, pp. 85–93, 2022, doi: 10.17475/kastorman.1178865.
ISNAD Güngör, Celal. “Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level”. Kastamonu University Journal of Forestry Faculty 22/2 (September 2022), 85-93. https://doi.org/10.17475/kastorman.1178865.
JAMA Güngör C. Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level. Kastamonu University Journal of Forestry Faculty. 2022;22:85–93.
MLA Güngör, Celal. “Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, 2022, pp. 85-93, doi:10.17475/kastorman.1178865.
Vancouver Güngör C. Comparison of Ergonomic Design Approaches for Office Chairs by Accommodation Level. Kastamonu University Journal of Forestry Faculty. 2022;22(2):85-93.

14178  14179       14165           14166           14167            14168