Research Article
BibTex RIS Cite

Kısa Cam Lif Güçlendirmesinin Odun Plastik Kompozitlerinin Bazı Fiziksel, Mekanik Özellikleri ve Yanma Performansına Etkisi

Year 2022, Volume: 22 Issue: 3, 273 - 279, 23.12.2022
https://doi.org/10.17475/kastorman.1215354

Abstract

Çalışmanın amacı: Bu çalışma kısa cam lif güçlendirmesi ile odun plastik kompozitlerinin (OPK) bazı fiziksel, mekanik özelliklerini ve yanma direncinin arttırılmasını amaçlamıştır.
Materyal ve Yöntem:OPK’lar farklı oranlarda kısa cam lifleri ile güçlendirilmiştir. Güçlendirmenin fiziksel özellikler olarak su alma, kalınlığa şişme, mekanik özellikler olarak eğilme direnci, elastikiyet modülü ve çekme direncine olan etkisi belirlenmiştir. Yangın direnci performansı ayrıca limit oksijen indeksi (LOI) testi ile değerlendirilmiştir.
Sonuçlar: Güçlendirme fiziksel özellikleri iyileştirmiştir. Su alma ve kalınlığa şişme değerleri artan cam lif içeriği ile azalmıştır. Eğilme direnci %28'e kadar yükselirken, çekme mukavemeti %24’e kadar artmıştır. Elastikiyet modülünde önemli bir iyileşme olmuştur (~%122). Cam elyaf takviyesi ayrıca OPK’ların yangın performansını da iyileştirmiştir.
Önemli vurgular: OPK’lar için sentetik elyaf takviyesi ile daha yüksek özellikler elde edilebilir

References

  • ASTM D570-98 (2018). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638-14 (2017). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D2863-19 (2019). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA, USA.
  • AlMaadeed, M.A., Kahraman, R., Khanam, P.N. & Madi, N. (2012). Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Materials & Design, 42, 289-294.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H. & White, R.H. (2011). Properties of flat‐pressed wood plastic composites containing fire retardants. Journal of Applied Polymer Science, 122(5), 3201-3210.
  • Bouafif, H., Koubaa, A., Perré, P. & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 40(12), 1975-1981.
  • Chaharmahali, M., Tajvidi, M. & Najafi, S.K. (2008). Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polymer composites, 29(6), 606-610.
  • Durmaz, S., Erdil, Y.Z. & Avci, E. (2021). Improvement of technological properties of wood plastic composites reinforced with glass and carbon fibre fabric. Polymers and Polymer Composites, 29(9), S1457-S1465.
  • Durmaz, S., Erdil, Y.Z. & Ozgenc, O. (2022). Accelerated weathering performance of wood‐plastic composites reinforced with carbon and glass fibre‐woven fabrics. Coloration Technology, 138(1), 71-81.
  • Fabiyi, J.S. & McDonald, A.G. (2010). Effect of wood species on property and weathering performance of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1434-1440.
  • Ferreira, S.R., de Andrade, R.G.M., Koenders, E., de Andrade Silva, F., Fairbairn, E.D.M.R. & Toledo Filho, R.D. (2021). Pull-out behavior and tensile response of natural fibers under different relative humidity levels. Construction and Building Materials, 308, 124823.
  • Guo, Y., Zhu, S., Chen, Y. & Li, D. (2019). Thermal properties of wood-plastic composites with different compositions. Materials, 12(6), 881.
  • Guo, G. & Kethineni, C. (2020). Direct injection molding of hybrid polypropylene/wood-fiber composites reinforced with glass fiber and carbon fiber. The International Journal of Advanced Manufacturing Technology, 106(1), 201-209.
  • Hosseinihashemi, S. K., Arwinfar, F., Najafi, A., Nemli, G. & Ayrilmis, N. (2016). Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement, 86, 202-208.
  • Karsli, N.G. & Aytac, A. (2013). Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51, 270-275.
  • Kaymakci, A., Ayrilmis, N. & Akkilic, H. (2016). Utilization of tinder fungus as filler in production of hdpe/wood composite. Wood Research, 61(6), 885-894.
  • Kim J.K. & Pal, K., (2010). Recent Advances in the Processing of Wood-Plastic Composites. 1th ed. Berlin: Springer Science and Business Media, 2010, p. 1.
  • Khan, R.A., Khan, M.A., Zaman, H.U., Pervin, S., Khan, N., Sultana, S. & Mustafa, A. I. (2010). Comparative studies of mechanical and interfacial properties between jute and E-glass fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 29(7), 1078-1088.
  • Klyosov, A.A. (2007). Wood-plastic Composites. 1th ed. New Jersey: John Wiley & Sons, 75p.
  • Kozłowski, R. & Władyka‐Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for advanced technologies, 19(6), 446-453.
  • Leu, S.Y., Yang, T.H., Lo, S.F. & Yang, T.H. (2012). Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Construction and Building Materials, 29, 120-127.
  • Li, J. & Cai, C.L. (2011). The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Current Applied Physics, 11(1), 50-54.
  • Nagarjun, J., Kanchana, J., RajeshKumar, G., Manimaran, S. & Krishnaprakash, M. (2021). Enhancement of Mechanical Behavior of PLA Matrix Using Tamarind and Date Seed Micro Fillers. Journal of Natural Fibers, 1-13.
  • Rochman, C.M., Hoh, E., Kurobe, T. & Teh, S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific reports, 3(1), 1-7.
  • Seo, Y.R., Kim, B.J. & Lee, S.Y. (2019). Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology, 47(4), 472-485.
  • Stark, N.M. & Matuana, L.M. (2004). Surface chemistry and mechanical property changes of wood‐flour/high‐density‐polyethylene composites after accelerated weathering. Journal of Applied Polymer Science, 94(6), 2263-2273.
  • Valente, M., Sarasini, F., Marra, F., Tirillò, J. & Pulci, G. (2011). Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Composites Part A: Applied Science and Manufacturing, 42(6), 649-657.
  • Wang, W. & Morrell, J.J. (2005). Effects of moisture and temperature cycling on material properties of a wood/plastic composite. Forest products journal, 55(10), 81-83.
  • Zhang, X., Yang, H., Lin, Z. & Tan, S. (2013). Polypropylene hybrid composites filled by wood flour and short glass fiber: effect of compatibilizer on structure and properties. Journal of Thermoplastic Composite Materials, 26(1), 16-29.

Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites

Year 2022, Volume: 22 Issue: 3, 273 - 279, 23.12.2022
https://doi.org/10.17475/kastorman.1215354

Abstract

Aim of study: This study aimed to improve some physical, mechanical properties, and fire resistance of wood-plastic composites (WPCs) with short glass fiber reinforcement (SGFR).
Materials and Methods: The WPCs were reinforced with different ratios of short glass fiber (SGF). The effect of reinforcement on the water absorption (WA), thickness swelling (TS) as physical properties, flexural strength, modulus of elasticity, and tensile strength as mechanical properties were determined. The fire resistance performance was also evaluated by the limit oxygen index (LOI) test.
Main results: The reinforcement improved the physical properties. The WA and TS values decreased with increasing glass fiber content. Flexural strength increased up to 28%, while 24% for tensile strength. There was a substantial enhancement in the modulus of elasticity (up to 122%). The glass fiber reinforcement also improved the fire performance of WPCs.
Highlights: The higher properties could be obtained by synthetic fiber reinforcement for WPCs.

References

  • ASTM D570-98 (2018). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638-14 (2017). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D2863-19 (2019). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA, USA.
  • AlMaadeed, M.A., Kahraman, R., Khanam, P.N. & Madi, N. (2012). Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: Mechanical and thermal properties. Materials & Design, 42, 289-294.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H. & White, R.H. (2011). Properties of flat‐pressed wood plastic composites containing fire retardants. Journal of Applied Polymer Science, 122(5), 3201-3210.
  • Bouafif, H., Koubaa, A., Perré, P. & Cloutier, A. (2009). Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 40(12), 1975-1981.
  • Chaharmahali, M., Tajvidi, M. & Najafi, S.K. (2008). Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polymer composites, 29(6), 606-610.
  • Durmaz, S., Erdil, Y.Z. & Avci, E. (2021). Improvement of technological properties of wood plastic composites reinforced with glass and carbon fibre fabric. Polymers and Polymer Composites, 29(9), S1457-S1465.
  • Durmaz, S., Erdil, Y.Z. & Ozgenc, O. (2022). Accelerated weathering performance of wood‐plastic composites reinforced with carbon and glass fibre‐woven fabrics. Coloration Technology, 138(1), 71-81.
  • Fabiyi, J.S. & McDonald, A.G. (2010). Effect of wood species on property and weathering performance of wood plastic composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1434-1440.
  • Ferreira, S.R., de Andrade, R.G.M., Koenders, E., de Andrade Silva, F., Fairbairn, E.D.M.R. & Toledo Filho, R.D. (2021). Pull-out behavior and tensile response of natural fibers under different relative humidity levels. Construction and Building Materials, 308, 124823.
  • Guo, Y., Zhu, S., Chen, Y. & Li, D. (2019). Thermal properties of wood-plastic composites with different compositions. Materials, 12(6), 881.
  • Guo, G. & Kethineni, C. (2020). Direct injection molding of hybrid polypropylene/wood-fiber composites reinforced with glass fiber and carbon fiber. The International Journal of Advanced Manufacturing Technology, 106(1), 201-209.
  • Hosseinihashemi, S. K., Arwinfar, F., Najafi, A., Nemli, G. & Ayrilmis, N. (2016). Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement, 86, 202-208.
  • Karsli, N.G. & Aytac, A. (2013). Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51, 270-275.
  • Kaymakci, A., Ayrilmis, N. & Akkilic, H. (2016). Utilization of tinder fungus as filler in production of hdpe/wood composite. Wood Research, 61(6), 885-894.
  • Kim J.K. & Pal, K., (2010). Recent Advances in the Processing of Wood-Plastic Composites. 1th ed. Berlin: Springer Science and Business Media, 2010, p. 1.
  • Khan, R.A., Khan, M.A., Zaman, H.U., Pervin, S., Khan, N., Sultana, S. & Mustafa, A. I. (2010). Comparative studies of mechanical and interfacial properties between jute and E-glass fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 29(7), 1078-1088.
  • Klyosov, A.A. (2007). Wood-plastic Composites. 1th ed. New Jersey: John Wiley & Sons, 75p.
  • Kozłowski, R. & Władyka‐Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for advanced technologies, 19(6), 446-453.
  • Leu, S.Y., Yang, T.H., Lo, S.F. & Yang, T.H. (2012). Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Construction and Building Materials, 29, 120-127.
  • Li, J. & Cai, C.L. (2011). The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Current Applied Physics, 11(1), 50-54.
  • Nagarjun, J., Kanchana, J., RajeshKumar, G., Manimaran, S. & Krishnaprakash, M. (2021). Enhancement of Mechanical Behavior of PLA Matrix Using Tamarind and Date Seed Micro Fillers. Journal of Natural Fibers, 1-13.
  • Rochman, C.M., Hoh, E., Kurobe, T. & Teh, S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific reports, 3(1), 1-7.
  • Seo, Y.R., Kim, B.J. & Lee, S.Y. (2019). Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology, 47(4), 472-485.
  • Stark, N.M. & Matuana, L.M. (2004). Surface chemistry and mechanical property changes of wood‐flour/high‐density‐polyethylene composites after accelerated weathering. Journal of Applied Polymer Science, 94(6), 2263-2273.
  • Valente, M., Sarasini, F., Marra, F., Tirillò, J. & Pulci, G. (2011). Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Composites Part A: Applied Science and Manufacturing, 42(6), 649-657.
  • Wang, W. & Morrell, J.J. (2005). Effects of moisture and temperature cycling on material properties of a wood/plastic composite. Forest products journal, 55(10), 81-83.
  • Zhang, X., Yang, H., Lin, Z. & Tan, S. (2013). Polypropylene hybrid composites filled by wood flour and short glass fiber: effect of compatibilizer on structure and properties. Journal of Thermoplastic Composite Materials, 26(1), 16-29.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Sefa Durmaz This is me

Uğur Aras This is me

Publication Date December 23, 2022
Published in Issue Year 2022 Volume: 22 Issue: 3

Cite

APA Durmaz, S., & Aras, U. (2022). Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites. Kastamonu University Journal of Forestry Faculty, 22(3), 273-279. https://doi.org/10.17475/kastorman.1215354
AMA Durmaz S, Aras U. Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites. Kastamonu University Journal of Forestry Faculty. December 2022;22(3):273-279. doi:10.17475/kastorman.1215354
Chicago Durmaz, Sefa, and Uğur Aras. “Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites”. Kastamonu University Journal of Forestry Faculty 22, no. 3 (December 2022): 273-79. https://doi.org/10.17475/kastorman.1215354.
EndNote Durmaz S, Aras U (December 1, 2022) Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites. Kastamonu University Journal of Forestry Faculty 22 3 273–279.
IEEE S. Durmaz and U. Aras, “Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, pp. 273–279, 2022, doi: 10.17475/kastorman.1215354.
ISNAD Durmaz, Sefa - Aras, Uğur. “Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites”. Kastamonu University Journal of Forestry Faculty 22/3 (December 2022), 273-279. https://doi.org/10.17475/kastorman.1215354.
JAMA Durmaz S, Aras U. Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites. Kastamonu University Journal of Forestry Faculty. 2022;22:273–279.
MLA Durmaz, Sefa and Uğur Aras. “Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, 2022, pp. 273-9, doi:10.17475/kastorman.1215354.
Vancouver Durmaz S, Aras U. Effect of Short Glass Fiber Reinforcement on Physical, Mechanical Properties and Fire Performance of Wood Plastic Composites. Kastamonu University Journal of Forestry Faculty. 2022;22(3):273-9.

14178  14179       14165           14166           14167            14168