Research Article
BibTex RIS Cite

Mantar Üretimi Atık Liflerinin Polikaprolakton (Pcl) Esaslı Biyokompozit Malzeme Üretiminde Kullanım Olanaklarının Araştırılması

Year 2022, Volume: 22 Issue: 3, 280 - 288, 23.12.2022
https://doi.org/10.17475/kastorman.1215362

Abstract

Çalışmanın amacı: Lentinus edodes mantarının yetiştirilmesinde kullanılan meşe ve kayın odunu atıklarının pcl biyokompozit film malzemenin üretiminde kullanım olanakları araştırılmıştır.
Materyal ve yöntem: Lentinus edodes mantarı her iki lignoselülozik atık türünde 2 hasat periyoduna tabi tutulmuş ve eşit bozunma süreleri elde edilmiştir. Bozunan liflerin kimyasal içerikleri belirlenmiştir. Ardından %15 ve %30 ham ve bozunmuş lifler kullanılarak üretilen pcl biyokompozit filmin mekanik özelliklere etkisi bulunmuştur. Kompozit malzemenin su alma ve kalınlığına şişme değerleri bulunmuştur.
Temel sonuçlar: Meşe ve Kayın odununun Lentinus edodes mantarı bozunumu sonucunda, holoselüloz ve lignin içeriğinin azaldığı, selüloz ve alfa selüloz içeriğinin arttığı tespit edilmiştir. Meşe ve kayın atığı kullanılarak üretilen filmin yoğunluğunun arttığı belirlenmiştir. En yüksek artış %30 lif ilave edilerek üretilen filmlerden elde edilmiştir. Pcl kompozit filmin çekme mukavemeti ve kopma uzama değerlerinin azaldığı ve elastisite modülü değerinin arttığı tespit edilmiştir. Genel olarak, kontrol örneğine göre filmin su alma miktarının arttığı bulunmuştur.
Araştırma vurguları: Mantar atıklarının, polimer malzeme üretimine uygunluğunu araştırmak

References

  • Ashrafuzzaman, M., Kamruzzaman, A.K.M., Ismail, R. M. & Shahidullah, S. M. (2009). Comparative studies on the growth and yield of shiitake mushroom (Lentinus edodes) on different substrates. Advances in Environmental Biology, 3(2), 195-203.
  • Ayrilmis, N., Kaymakci, A. & Akkılıc, H. (2015). Utılızatıon of tınder fungus as fıller ın manufacture of hdpe composıtes. ProLigno, 11,122-129. ONLINE ISSN 2069-7430 ISSN-L 1841-4737.
  • Bodîrlău, R., Spiridon, I. & Teacă, C.A. (2007). Chemical investigation of wood tree species in temperate forest in East-Northern Romenia. BioResources, 2(1), 41-57
  • Bodîrlău, R., Teacă, C.A. & Spiridon, I. (2008). Chemıcal modıfıcatıon of beech wood: effect on thermal stabılıty. BioResources, 3(3), 789-800.
  • Bledzki, A.K. & Gassan, J. (1998). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2), 221-274.
  • Bourmaud, A., Dhakal, H., Habrant, A., Padovani, J., Siniscalco, D. & Ramage, M.H. (2017). Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing, 103, 292-303.
  • Cavdar, A.D., Torun, S.B., Ertas, M. & Mengeloglu, F. (2019). Ammonium zeolite and ammonium phosphate applied as fire reterdants for microcrystalline cellulose filled thermoplastic composites. Fire Safety Journal, 107, 202-209.
  • Cecchini, C. (2017). Bioplastics made from upcycled food waste, Prospects for their use in the field of design. 12th EAD Conference Sapienza University of Rome 12-14 April. doi: 10.1080/14606925.2017.1352684.
  • Dhakal, H.N., Zhang, Z.Y. & Richardson, M.O.W. (2007). Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites. Composites Science Technology, 67, 1674-83.
  • Dhakal, H.N., Zhang, Z.Y., Guthrie, R., MacMullen, J. & Bennett, N. (2013). Development of Flax/Carbon fiber hybrid composites for enhanced properties. Carbohydrate polymers, 96, 1-8.
  • Dhakal, H.N., Ismail, S.O., Zhang, Z., Barber, A., Welsh, E., Maigret, J.E. & Beaugrand, J. (2018). Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing, 113, 350-358.
  • Garcia, A.V., Santonja, M.R. & Sanahuja, A.B. (2014). Characterization and degredation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues. Polymer degredation and stability, 108, 269-279.
  • Gaitan-Hernandez, R., Esqueda, M., Gutierrez, A., Sanchez, A., Beltran-garcla, M. & Mata, G. (2006). Bioconversion of agrowastes by Lentinus edodes: The high potential of viticulture residues. Applied Microbiol Biotechnology, 71, 432-439.
  • Karakuş, K. & Mengeloglu, F. (2016). Polycaprolactone (PCL) based polymer composites filled wheat straw flour. Kastamonu University Journal of Forestry Faculty, 16(1), 264-268.
  • Kaymakci, A. & Ayrilmis, N. (2014). Investigation of correlation between Brinell hardeness and tensile strength of wood plastic composites. Composites part b, engineering 58, 582-585.
  • Mengeloglu, F. & Karakus, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal Agriculture Forestry, 32, 537-546.
  • Mester, T., Varela, E. & Tien, M. (2004). Wood degradation by brown-rot and white-rot fungi. the mycota ıı genetics and biotechnology (2nd Edition) u. Kück (Ed.), Springer-Verlag Berlin –Heidelberg, 356-359.
  • Mishra, R.K., Ha, S.K., Verma, K. & Tiwari, S.K. (2018). Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices, 3, 263-288.
  • Morais M. H., Ramos A. C., Matos N. & Santos Oliveira, E. J. (2000). Production of shiitake mushroom on lignocellulosic residues. Food Science and Technology International, 6: 123.
  • Özçelik E. & Peşken A. (2007). Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinus Edodes). Bioresource Technology, 98, 2652-2658.
  • Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. & Mohanty, A.K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in polymer science, 38, 1653-1689. Doi: 10.1016/j.progpolymsci.2013.05.006.
  • Sözbir, G.D., Bektaş, İ. & Zülkadir, A. (2015). Lignocellulosic wastes used for the cultivation of Pleurotus ostreatus mushrooms: Effects on productivity. Bioresources, 10(3), 4686-4693. DOI: 10.15376/biores.10.3. 4686-4693
  • Sözbir, G.D. (2021). Utilization of various lignocellulosic substrates for Pleurotus Ostreatus mushroom cultivation in the manufacture of polycaprolactone (pcl)- based biocomposite films. Bioresources, 16(2), 3783-3796.
  • Shinoj, S., Visvanathan, R., Panigrahi, S. & Kuchubaba, M. (2011). Oil palm fiber and its composites: a review. Industrial Crops and Products, 33, 7-22.
  • Vaisanen, T., Haapala, A., Lappalainen, R. & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Management, 54, 62-73.
  • Wibowo, A.C., Mohanthy, A.K., Misra, M. & Drzal, L.T. (2004). Chopped industrial hemp fiber reinforced cellulosic plastic biocomposites: thermomechanical and morphological properties. Industrial & engineering chemistry research, 43, 4883-8.
  • Zinoviadou, K.G., Gougouli, C.G. & Biliaderis, C.G. (2016). Innovative biobased materials for packaging sustainability. Innovation Strategies in the Food Industry, 167-189. Doi: 10,1016/B078-0-12-803751-5.00009-X

Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production

Year 2022, Volume: 22 Issue: 3, 280 - 288, 23.12.2022
https://doi.org/10.17475/kastorman.1215362

Abstract

Aim of study: The possibilities of using oak and beech wood wastes used in the cultivation of Lentinus edodes fungus in the production of pcl biocomposite film material were investigated.
Material and methods: Lentinus edodes mushroom was subjected to 2 harvest periods in both lignocellulosic waste types and equal degradation times were obtained. Chemical contents of degraded fibers were determined. Then, the effect of pcl biocomposite film produced using 15% and 30% raw and degraded fibers on mechanical properties was found. The water uptake and swelling values of the composite material were determined.
Main results: As a result of lentinus edodes fungus degradation of Oak and Beech wood, it was determined that holocellulose and lignin contents decreased, while cellulose and alpha cellulose contents increased. It was determined that the density of the film produced by using oak and beech waste increased. The highest increase was obtained from the films produced by adding 30% fiber. It was determined that the tensile strength and elongation at break values of pcl composite film decreased and the modulus of elasticity increased. In general, it was found that the water uptake of the film increased compared to the control sample.
Highlights: To investigate the suitability of mushroom waste for polymer material production

References

  • Ashrafuzzaman, M., Kamruzzaman, A.K.M., Ismail, R. M. & Shahidullah, S. M. (2009). Comparative studies on the growth and yield of shiitake mushroom (Lentinus edodes) on different substrates. Advances in Environmental Biology, 3(2), 195-203.
  • Ayrilmis, N., Kaymakci, A. & Akkılıc, H. (2015). Utılızatıon of tınder fungus as fıller ın manufacture of hdpe composıtes. ProLigno, 11,122-129. ONLINE ISSN 2069-7430 ISSN-L 1841-4737.
  • Bodîrlău, R., Spiridon, I. & Teacă, C.A. (2007). Chemical investigation of wood tree species in temperate forest in East-Northern Romenia. BioResources, 2(1), 41-57
  • Bodîrlău, R., Teacă, C.A. & Spiridon, I. (2008). Chemıcal modıfıcatıon of beech wood: effect on thermal stabılıty. BioResources, 3(3), 789-800.
  • Bledzki, A.K. & Gassan, J. (1998). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2), 221-274.
  • Bourmaud, A., Dhakal, H., Habrant, A., Padovani, J., Siniscalco, D. & Ramage, M.H. (2017). Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing, 103, 292-303.
  • Cavdar, A.D., Torun, S.B., Ertas, M. & Mengeloglu, F. (2019). Ammonium zeolite and ammonium phosphate applied as fire reterdants for microcrystalline cellulose filled thermoplastic composites. Fire Safety Journal, 107, 202-209.
  • Cecchini, C. (2017). Bioplastics made from upcycled food waste, Prospects for their use in the field of design. 12th EAD Conference Sapienza University of Rome 12-14 April. doi: 10.1080/14606925.2017.1352684.
  • Dhakal, H.N., Zhang, Z.Y. & Richardson, M.O.W. (2007). Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites. Composites Science Technology, 67, 1674-83.
  • Dhakal, H.N., Zhang, Z.Y., Guthrie, R., MacMullen, J. & Bennett, N. (2013). Development of Flax/Carbon fiber hybrid composites for enhanced properties. Carbohydrate polymers, 96, 1-8.
  • Dhakal, H.N., Ismail, S.O., Zhang, Z., Barber, A., Welsh, E., Maigret, J.E. & Beaugrand, J. (2018). Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing, 113, 350-358.
  • Garcia, A.V., Santonja, M.R. & Sanahuja, A.B. (2014). Characterization and degredation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues. Polymer degredation and stability, 108, 269-279.
  • Gaitan-Hernandez, R., Esqueda, M., Gutierrez, A., Sanchez, A., Beltran-garcla, M. & Mata, G. (2006). Bioconversion of agrowastes by Lentinus edodes: The high potential of viticulture residues. Applied Microbiol Biotechnology, 71, 432-439.
  • Karakuş, K. & Mengeloglu, F. (2016). Polycaprolactone (PCL) based polymer composites filled wheat straw flour. Kastamonu University Journal of Forestry Faculty, 16(1), 264-268.
  • Kaymakci, A. & Ayrilmis, N. (2014). Investigation of correlation between Brinell hardeness and tensile strength of wood plastic composites. Composites part b, engineering 58, 582-585.
  • Mengeloglu, F. & Karakus, K. (2008). Some properties of eucalyptus wood flour filled recycled high density polyethylene polymer-composites. Turkish Journal Agriculture Forestry, 32, 537-546.
  • Mester, T., Varela, E. & Tien, M. (2004). Wood degradation by brown-rot and white-rot fungi. the mycota ıı genetics and biotechnology (2nd Edition) u. Kück (Ed.), Springer-Verlag Berlin –Heidelberg, 356-359.
  • Mishra, R.K., Ha, S.K., Verma, K. & Tiwari, S.K. (2018). Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices, 3, 263-288.
  • Morais M. H., Ramos A. C., Matos N. & Santos Oliveira, E. J. (2000). Production of shiitake mushroom on lignocellulosic residues. Food Science and Technology International, 6: 123.
  • Özçelik E. & Peşken A. (2007). Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinus Edodes). Bioresource Technology, 98, 2652-2658.
  • Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. & Mohanty, A.K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in polymer science, 38, 1653-1689. Doi: 10.1016/j.progpolymsci.2013.05.006.
  • Sözbir, G.D., Bektaş, İ. & Zülkadir, A. (2015). Lignocellulosic wastes used for the cultivation of Pleurotus ostreatus mushrooms: Effects on productivity. Bioresources, 10(3), 4686-4693. DOI: 10.15376/biores.10.3. 4686-4693
  • Sözbir, G.D. (2021). Utilization of various lignocellulosic substrates for Pleurotus Ostreatus mushroom cultivation in the manufacture of polycaprolactone (pcl)- based biocomposite films. Bioresources, 16(2), 3783-3796.
  • Shinoj, S., Visvanathan, R., Panigrahi, S. & Kuchubaba, M. (2011). Oil palm fiber and its composites: a review. Industrial Crops and Products, 33, 7-22.
  • Vaisanen, T., Haapala, A., Lappalainen, R. & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Management, 54, 62-73.
  • Wibowo, A.C., Mohanthy, A.K., Misra, M. & Drzal, L.T. (2004). Chopped industrial hemp fiber reinforced cellulosic plastic biocomposites: thermomechanical and morphological properties. Industrial & engineering chemistry research, 43, 4883-8.
  • Zinoviadou, K.G., Gougouli, C.G. & Biliaderis, C.G. (2016). Innovative biobased materials for packaging sustainability. Innovation Strategies in the Food Industry, 167-189. Doi: 10,1016/B078-0-12-803751-5.00009-X
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gonca Düzkale Sözbir This is me

Fatih Mengeloğlu This is me

Kadir Karakuş This is me

Mesut Yalçın This is me

Çağlar Akçay This is me

Publication Date December 23, 2022
Published in Issue Year 2022 Volume: 22 Issue: 3

Cite

APA Düzkale Sözbir, G., Mengeloğlu, F., Karakuş, K., Yalçın, M., et al. (2022). Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Kastamonu University Journal of Forestry Faculty, 22(3), 280-288. https://doi.org/10.17475/kastorman.1215362
AMA Düzkale Sözbir G, Mengeloğlu F, Karakuş K, Yalçın M, Akçay Ç. Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Kastamonu University Journal of Forestry Faculty. December 2022;22(3):280-288. doi:10.17475/kastorman.1215362
Chicago Düzkale Sözbir, Gonca, Fatih Mengeloğlu, Kadir Karakuş, Mesut Yalçın, and Çağlar Akçay. “Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production”. Kastamonu University Journal of Forestry Faculty 22, no. 3 (December 2022): 280-88. https://doi.org/10.17475/kastorman.1215362.
EndNote Düzkale Sözbir G, Mengeloğlu F, Karakuş K, Yalçın M, Akçay Ç (December 1, 2022) Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Kastamonu University Journal of Forestry Faculty 22 3 280–288.
IEEE G. Düzkale Sözbir, F. Mengeloğlu, K. Karakuş, M. Yalçın, and Ç. Akçay, “Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, pp. 280–288, 2022, doi: 10.17475/kastorman.1215362.
ISNAD Düzkale Sözbir, Gonca et al. “Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production”. Kastamonu University Journal of Forestry Faculty 22/3 (December 2022), 280-288. https://doi.org/10.17475/kastorman.1215362.
JAMA Düzkale Sözbir G, Mengeloğlu F, Karakuş K, Yalçın M, Akçay Ç. Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Kastamonu University Journal of Forestry Faculty. 2022;22:280–288.
MLA Düzkale Sözbir, Gonca et al. “Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 3, 2022, pp. 280-8, doi:10.17475/kastorman.1215362.
Vancouver Düzkale Sözbir G, Mengeloğlu F, Karakuş K, Yalçın M, Akçay Ç. Investigation of Usage Possibilities of Mushroom Production Waste Fibers in Polycaprolactone (PCL) Based Biocomposite Material Production. Kastamonu University Journal of Forestry Faculty. 2022;22(3):280-8.

14178  14179       14165           14166           14167            14168