Research Article
BibTex RIS Cite

Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture

Year 2023, Volume: 23 Issue: 2, 86 - 98, 01.10.2023
https://doi.org/10.17475/kastorman.1367919

Abstract

Aim of study: This study's goal is to evaluate potassium carbonate as a catalyst for the transesterification of cellulose dissolved in TBAF/DMSO and to identify the optimal reaction conditions.
Material and methods: First, a solvent system consisting of 33 g TBAF and 165 g DMSO was prepared for 10 g dissolving pulp in this solvent system for one hour, then the cellulose solution was generated. The catalysts were added to the solution. At reaction temperature, vinyl acetate was added to the solution and the 70-h transesterification process was started. The product was precipitated in ethyl alcohol and washed with water on a sieve, and then dried at room temperature. The effects of changes in catalyst ratio and temperature on bond acetyl groups were investigated by heterogeneous saponification method, FTIR, XRD, DSC, viscosity and solubility test.
Main results: The samples' DS values ranged from 1.39 to 2.37 and using phosphate salt mixture catalyst and increasing the ratio of catalyst increased the DS. FTIR and XRD data revealed that acetylation was effective. DSC thermograms showed a minor endotherm at 283.3-291.2°C, and it was identified as the melting point. With potassium carbonate, the viscosity and the solubility of the products increased.
Highlights: Cellulose in TBAF/DMSO could be acetylated using potassium carbonate as the catalyst. Potassium carbonate's catalyst activity was weak on DS.

References

  • ASTM (2010) D871-96. Standard Test Methods of Testing Cellulose Acetate.
  • TAPPI (2008) T 230 om-08. Viscosity of Pulp (capillary viscometer method). Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (2013) T 236 om-13. Kappa number of pulp Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (1999) T203 cm-99. Alpha-, Beta-, and Gamma-Cellulose in Pulp Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (2000) T235 cm-00. Alkali solubility of pulp at 25°C Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • Ahmad, M. H., Selvanathan, V., Azzahari, A. D., Sonsudin, F., Shahabudin, N., et al. (2020). The impact of acetylation on physical and electrochemical characteristics of cellulose-based quasi-solid polymer electrolytes. Journal of Polymer Research, 27(6), 1-13.
  • Ass, B. A., Frollini, E. & Heinze, T. (2004). Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate, Macromolecular Bioscience, 4, 11, 1008-1013.
  • Barud, H. S., de Araújo Júnior, A. M., Santos, D. B., de Assunção, R. M., Meireles, C. S., et al. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471(1-2), 61-69.
  • Bendaoud, A. & Chalamet, Y. (2014). Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohydrate Polymers, 108, 75-82.
  • Buchanan, C. M., Edgar, K. J. & Wilson, A. K. (1991). Preparation and characterization of cellulose monoacetates: the relationship between structure and water solubility. Macromolecules, 24(11), 3060-3064.
  • Cerqueira, D. A., Valente, A. J., Guimes Filho, R., & Burrows, H. D. (2009). Synthesis and properties of polyaniline–cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate Polymers, 78(3), 402-408.
  • Ciacco, G. T., Liebert, T. F., Frollini, E. & Heinze, T. J. (2003). Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose, 10(2), 125-132.
  • Ciolacu, D., Ciolacu, F. & Popa, V. I. (2011). Amorphous cellulose—structure and characterization, Cellulose Chemistry and Technology, 45, 1-13.
  • Çetin, N. S., Özmen, N. & Birinci, E. (2011). Acetylation of wood with various catalysts. Journal of Wood Chemistry and Technology, 31(2), 142-153.
  • Dicke, R. (2004). A straight way to regioselectively functionalized polysaccharide esters. Cellulose, 11(2), 255-263.
  • Fan, X., Liu, Z. W., Lu, J. & Liu, Z. T. (2009). Cellulose triacetate optical film preparation from ramie fiber. Industrial & Engineering Chemistry Research, 48(13), 6212-6215.
  • Fan, X. S., Liu, Z. T., Liu, Z. W. & Lu, J. (2010). Cellulose acetate membrane synthesis from biomass of ramie. Journal of Applied Polymer Science, 117(1), 588-595.
  • Fan, G., Wang, M., Liao, C., Fang, T., Li, J. & Zhou, R. (2013). Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydrate Polymers, 94(1), 71-76.
  • Filho, G. R., da Cruz, S. F., Pasquini, D., Cerqueira, D. A., de Souza Prado, V., et al. (2000). Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. Journal of Membrane Science, 177(1-2), 225-231.
  • French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896.
  • Glegg, R. E., Ingerick, D., Parmerter, R. R., Salzer, J. S. T. & Warburton, R. S. (1968). Acetylation of cellulose I and II studied by limiting viscosity and X‐ray diffraction. Journal of Polymer Science Part A‐2: Polymer Physics, 6(4), 745-773.
  • Gümüskaya, E., Usta, M. & Kirci, H. (2003). The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81(3), 559-564.
  • Heinze, T., Dicke, R., Koschella, A., Kull, A. H., Klohr, E. A., et al. (2000). Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromolecular Chemistry and Physics, 201(6), 627-631.
  • Heinze, T., & Liebert, T. (2001). Unconventional methods in cellulose functionalization. Progress in Polymer Science, 26(9), 1689-1762.
  • Heinze, T., Liebert, T. & Koschella, A. (2006a). Esters of Carboxylic Acids – Conventional Methods. Esterification of Polysaccharides. Springer Science & Business Media (pp. 41-52).
  • Heinze, T., Liebert, T. & Koschella, A. (2006b). Introduction and Objectives – Conventional Methods. Esterification of polysaccharides. Springer Science & Business Media (pp. 1-3).
  • Heinze, T. & Köhler, S. (2010). Dimethyl sulfoxide and ammonium fluorides—novel cellulose solvents. Cellulose Solvents: For Analysis, Shaping and Chemical Modification (pp. 103-118). American Chemical Society.
  • Heinze, T., El Seoud, O. A. & Koschella, A. (2018). Cellulose activation and dissolution. Cellulose Derivatives (pp. 173-257). Springer, Cham.
  • Hu, W., Chen, S., Xu, Q. & Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83(4), 1575-1581.
  • Hussain, M. A., Liebert, T. & Heinze, T. (2004). Acylation of Cellulose with N, N′‐Carbonyldiimidazole‐Activated Acids in the Novel Solvent Dimethyl Sulfoxide/Tetrabutylammonium Fluoride. Macromolecular Rapid Communications, 25(9), 916-920.
  • Jebrane, M. & Sebe, G. (2007). A novel simple route to wood acetylation by transesterification with vinyl acetate. Holzforschung, 61, 143-147.
  • Jebrane, M., Pichavant, F. & Sèbe, G. (2011). A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride. Carbohydrate Polymers, 83(2), 339-345.
  • Kidwai, M., Lal, M., Mishra, N. K. & Jahan, A. (2013). Potassium carbonate as a green catalyst for Markovnikov addition of azoles to vinyl acetate in PEG. Green Chemistry Letters and Reviews, 6(1), 63-68.
  • Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Kono, H., Oka, C., Kishimoto, R. & Fujita, S. (2017). NMR characterization of cellulose acetate: mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances. Carbohydrate Polymers, 170, 23-32.
  • Kostag, M., Gericke, M., Heinze, T. & El Seoud, O. A. (2019). Twenty-five years of cellulose chemistry: Innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose, 26(1), 139-184.
  • Köhler, S. & Heinze, T. (2007). New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides, Macromolecular Bioscience, 7(3), 307-314.
  • Lindman, B., Karlström, G. & Stigsson, L. (2010). On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76-81.
  • Loo, M. M. L., Hashim, R. & Leh, C. P. (2012). Recycling of valueless paper dust to a low-grade cellulose acetate: Effect of pretreatments on acetylation. BioResources, 7(1), 1068-1083.
  • Meireles, C. da S., Filho, G. R., Ferreira Jr, M. F., Cerqueira, D. A., Assunção, R. M. N., et al. (2010). Characterization of asymmetric membranes of cellulose acetate from biomass: Newspaper and mango seed. Carbohydrate Polymers, 80(3), 954-961.
  • Nagel, M. C. & Heinze, T. (2010). Esterification of cellulose with acyl-1H-benzotriazole. Polymer Bulletin, 65(9), 873-881.
  • Östlund, Å., Lundberg, D., Nordstierna, L., Holmberg, K., & Nydén, M. (2009). Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules, 10(9), 2401-2407.
  • Popescu, C. M., Larsson, P. T., Olaru, N. & Vasile, C. (2012). Spectroscopic study of acetylated kraft pulp fibers. Carbohydrate Polymers, 88(2), 530-536.
  • Saka, S. & Ohmae, K. (1996). Thermal properties of cellulose triacetate as prepared from low‐grade dissolving pulp. Journal of Applied Polymer Science, 62(7), 1003-1010.
  • Seoud, O. A. E., Nawaz, H. & Arêas, E. P. (2013). Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules, 18(1), 1270-1313.
  • Shaikh, H. M., Pandare, K. V., Nair, G. & Varma, A. J., (2009). Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers, 76, 1, 23-29.
  • Tang, L. G., Hon, D. N. S. & Zhu, Y. Q. (1996). Polymorphic transformations of cellulose acetates prepared by solution acetylation at an elevated temperature. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 33(2), 203-208.
  • Wang, S., Lu, A. & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169-206.
  • Wada, M. & Okano, T. (2001). Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose, 8(3), 183-188.
  • Yang, Z., Xu, S., Ma, X. & Wang, S. (2008). Characterization and acetylation behavior of bamboo pulp. Wood Science and Technology, 42(8), 621-632.

Selülozun TBAF/DMSO Çözücü Sisteminde KH2PO4 ve Na2HPO4 Tuz Karışımı Yerine Transesterifikasyonunda Katalizör Olarak Potasyum Karbonat

Year 2023, Volume: 23 Issue: 2, 86 - 98, 01.10.2023
https://doi.org/10.17475/kastorman.1367919

Abstract

Çalışmanın amacı: Bu çalışmanın amacı TBAF/DMSO içinde çözünmüş selülozun transesterifikasyonunda potasyum karbonatı katalizör olarak değerlendirmek, uygun reaksiyon koşullarını belirlemektir.
Materyal ve yöntem: 33 gram TBAF ve 165 gram sıvı DMSO’dan oluşan çözücü içerisinde mekanik olarak öğütülmüş yüksek saflık oranına sahip 10 gram çözünür hamur oda sıcaklığında 1 saat süreyle bekletilmiş ve selüloz çözeltisi üretilmiştir. Çözünen selüloza katalizör ilave edilmiş ve yönteme uygunsa ortam sıcaklığı arttırılmıştır. Reaksiyon sıcaklığına ulaşıldığında vinil asetat sisteme ilave edilmiş ve 70 saatlik transesterifikasyon reaksiyonu başlatılmıştır. Sürenin sonunda ürün sırasıyla etil alkol içerisinde çöktürülmüş ve su ile elek üzerinde yıkandıktan sonra, oda sıcaklığında kurutulmuştur. Katalizör oranı ve sıcaklığın değişiminin bağ asetil grupları üzerindeki etkileri heterojen sabunlaştırma yöntemi, FTIR, XRD, DSC, viskozite ve çözünürlük testi ile araştırılmıştır.
Sonuçlar: Örneklerin DS değerlerinin 1.39 ile 2.37 arasında değişmiş ve fosfat tuzu karışımı katalizörünün kullanılması ve katalizör oranının arttırılması ile DS artmıştır. FTIR ve XRD verileri asetilasyonun başarılı bir şekilde gerçekleştiğini göstermiştir. DSC termogramlarında 283.3-291.2°C'de küçük bir endoterm mevcuttur ve bu erime noktası olarak tanımlanmıştır. Potasyum karbonat ile, örneklerin viskoziteleri ve ürün çözünürlüğünün arttığı tespit edilmiştir.
Önemli vurgular: TBAF/DMSO içinde selülozun katalizör olarak potasyum karbonat ile asetilasyonu gerçekleştirilebilir. Potasyum karbonatın katalizör etkisinin DS üzerinde daha az etkili olduğu görülmüştür.

References

  • ASTM (2010) D871-96. Standard Test Methods of Testing Cellulose Acetate.
  • TAPPI (2008) T 230 om-08. Viscosity of Pulp (capillary viscometer method). Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (2013) T 236 om-13. Kappa number of pulp Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (1999) T203 cm-99. Alpha-, Beta-, and Gamma-Cellulose in Pulp Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • TAPPI (2000) T235 cm-00. Alkali solubility of pulp at 25°C Test Method. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • Ahmad, M. H., Selvanathan, V., Azzahari, A. D., Sonsudin, F., Shahabudin, N., et al. (2020). The impact of acetylation on physical and electrochemical characteristics of cellulose-based quasi-solid polymer electrolytes. Journal of Polymer Research, 27(6), 1-13.
  • Ass, B. A., Frollini, E. & Heinze, T. (2004). Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate, Macromolecular Bioscience, 4, 11, 1008-1013.
  • Barud, H. S., de Araújo Júnior, A. M., Santos, D. B., de Assunção, R. M., Meireles, C. S., et al. (2008). Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta, 471(1-2), 61-69.
  • Bendaoud, A. & Chalamet, Y. (2014). Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing. Carbohydrate Polymers, 108, 75-82.
  • Buchanan, C. M., Edgar, K. J. & Wilson, A. K. (1991). Preparation and characterization of cellulose monoacetates: the relationship between structure and water solubility. Macromolecules, 24(11), 3060-3064.
  • Cerqueira, D. A., Valente, A. J., Guimes Filho, R., & Burrows, H. D. (2009). Synthesis and properties of polyaniline–cellulose acetate blends: the use of sugarcane bagasse waste and the effect of the substitution degree. Carbohydrate Polymers, 78(3), 402-408.
  • Ciacco, G. T., Liebert, T. F., Frollini, E. & Heinze, T. J. (2003). Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose, 10(2), 125-132.
  • Ciolacu, D., Ciolacu, F. & Popa, V. I. (2011). Amorphous cellulose—structure and characterization, Cellulose Chemistry and Technology, 45, 1-13.
  • Çetin, N. S., Özmen, N. & Birinci, E. (2011). Acetylation of wood with various catalysts. Journal of Wood Chemistry and Technology, 31(2), 142-153.
  • Dicke, R. (2004). A straight way to regioselectively functionalized polysaccharide esters. Cellulose, 11(2), 255-263.
  • Fan, X., Liu, Z. W., Lu, J. & Liu, Z. T. (2009). Cellulose triacetate optical film preparation from ramie fiber. Industrial & Engineering Chemistry Research, 48(13), 6212-6215.
  • Fan, X. S., Liu, Z. T., Liu, Z. W. & Lu, J. (2010). Cellulose acetate membrane synthesis from biomass of ramie. Journal of Applied Polymer Science, 117(1), 588-595.
  • Fan, G., Wang, M., Liao, C., Fang, T., Li, J. & Zhou, R. (2013). Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydrate Polymers, 94(1), 71-76.
  • Filho, G. R., da Cruz, S. F., Pasquini, D., Cerqueira, D. A., de Souza Prado, V., et al. (2000). Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse. Journal of Membrane Science, 177(1-2), 225-231.
  • French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885-896.
  • Glegg, R. E., Ingerick, D., Parmerter, R. R., Salzer, J. S. T. & Warburton, R. S. (1968). Acetylation of cellulose I and II studied by limiting viscosity and X‐ray diffraction. Journal of Polymer Science Part A‐2: Polymer Physics, 6(4), 745-773.
  • Gümüskaya, E., Usta, M. & Kirci, H. (2003). The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81(3), 559-564.
  • Heinze, T., Dicke, R., Koschella, A., Kull, A. H., Klohr, E. A., et al. (2000). Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromolecular Chemistry and Physics, 201(6), 627-631.
  • Heinze, T., & Liebert, T. (2001). Unconventional methods in cellulose functionalization. Progress in Polymer Science, 26(9), 1689-1762.
  • Heinze, T., Liebert, T. & Koschella, A. (2006a). Esters of Carboxylic Acids – Conventional Methods. Esterification of Polysaccharides. Springer Science & Business Media (pp. 41-52).
  • Heinze, T., Liebert, T. & Koschella, A. (2006b). Introduction and Objectives – Conventional Methods. Esterification of polysaccharides. Springer Science & Business Media (pp. 1-3).
  • Heinze, T. & Köhler, S. (2010). Dimethyl sulfoxide and ammonium fluorides—novel cellulose solvents. Cellulose Solvents: For Analysis, Shaping and Chemical Modification (pp. 103-118). American Chemical Society.
  • Heinze, T., El Seoud, O. A. & Koschella, A. (2018). Cellulose activation and dissolution. Cellulose Derivatives (pp. 173-257). Springer, Cham.
  • Hu, W., Chen, S., Xu, Q. & Wang, H. (2011). Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydrate Polymers, 83(4), 1575-1581.
  • Hussain, M. A., Liebert, T. & Heinze, T. (2004). Acylation of Cellulose with N, N′‐Carbonyldiimidazole‐Activated Acids in the Novel Solvent Dimethyl Sulfoxide/Tetrabutylammonium Fluoride. Macromolecular Rapid Communications, 25(9), 916-920.
  • Jebrane, M. & Sebe, G. (2007). A novel simple route to wood acetylation by transesterification with vinyl acetate. Holzforschung, 61, 143-147.
  • Jebrane, M., Pichavant, F. & Sèbe, G. (2011). A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride. Carbohydrate Polymers, 83(2), 339-345.
  • Kidwai, M., Lal, M., Mishra, N. K. & Jahan, A. (2013). Potassium carbonate as a green catalyst for Markovnikov addition of azoles to vinyl acetate in PEG. Green Chemistry Letters and Reviews, 6(1), 63-68.
  • Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.
  • Kono, H., Oka, C., Kishimoto, R. & Fujita, S. (2017). NMR characterization of cellulose acetate: mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances. Carbohydrate Polymers, 170, 23-32.
  • Kostag, M., Gericke, M., Heinze, T. & El Seoud, O. A. (2019). Twenty-five years of cellulose chemistry: Innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose, 26(1), 139-184.
  • Köhler, S. & Heinze, T. (2007). New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides, Macromolecular Bioscience, 7(3), 307-314.
  • Lindman, B., Karlström, G. & Stigsson, L. (2010). On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76-81.
  • Loo, M. M. L., Hashim, R. & Leh, C. P. (2012). Recycling of valueless paper dust to a low-grade cellulose acetate: Effect of pretreatments on acetylation. BioResources, 7(1), 1068-1083.
  • Meireles, C. da S., Filho, G. R., Ferreira Jr, M. F., Cerqueira, D. A., Assunção, R. M. N., et al. (2010). Characterization of asymmetric membranes of cellulose acetate from biomass: Newspaper and mango seed. Carbohydrate Polymers, 80(3), 954-961.
  • Nagel, M. C. & Heinze, T. (2010). Esterification of cellulose with acyl-1H-benzotriazole. Polymer Bulletin, 65(9), 873-881.
  • Östlund, Å., Lundberg, D., Nordstierna, L., Holmberg, K., & Nydén, M. (2009). Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules, 10(9), 2401-2407.
  • Popescu, C. M., Larsson, P. T., Olaru, N. & Vasile, C. (2012). Spectroscopic study of acetylated kraft pulp fibers. Carbohydrate Polymers, 88(2), 530-536.
  • Saka, S. & Ohmae, K. (1996). Thermal properties of cellulose triacetate as prepared from low‐grade dissolving pulp. Journal of Applied Polymer Science, 62(7), 1003-1010.
  • Seoud, O. A. E., Nawaz, H. & Arêas, E. P. (2013). Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules, 18(1), 1270-1313.
  • Shaikh, H. M., Pandare, K. V., Nair, G. & Varma, A. J., (2009). Utilization of sugarcane bagasse cellulose for producing cellulose acetates: Novel use of residual hemicellulose as plasticizer. Carbohydrate Polymers, 76, 1, 23-29.
  • Tang, L. G., Hon, D. N. S. & Zhu, Y. Q. (1996). Polymorphic transformations of cellulose acetates prepared by solution acetylation at an elevated temperature. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 33(2), 203-208.
  • Wang, S., Lu, A. & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169-206.
  • Wada, M. & Okano, T. (2001). Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose, 8(3), 183-188.
  • Yang, Z., Xu, S., Ma, X. & Wang, S. (2008). Characterization and acetylation behavior of bamboo pulp. Wood Science and Technology, 42(8), 621-632.
There are 50 citations in total.

Details

Primary Language English
Subjects Forest Products Chemistry
Journal Section Articles
Authors

Emir Erişir

Esat Gümüşkaya

Early Pub Date September 29, 2023
Publication Date October 1, 2023
Published in Issue Year 2023 Volume: 23 Issue: 2

Cite

APA Erişir, E., & Gümüşkaya, E. (2023). Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture. Kastamonu University Journal of Forestry Faculty, 23(2), 86-98. https://doi.org/10.17475/kastorman.1367919
AMA Erişir E, Gümüşkaya E. Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture. Kastamonu University Journal of Forestry Faculty. October 2023;23(2):86-98. doi:10.17475/kastorman.1367919
Chicago Erişir, Emir, and Esat Gümüşkaya. “Potassium Carbonate As Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture”. Kastamonu University Journal of Forestry Faculty 23, no. 2 (October 2023): 86-98. https://doi.org/10.17475/kastorman.1367919.
EndNote Erişir E, Gümüşkaya E (October 1, 2023) Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture. Kastamonu University Journal of Forestry Faculty 23 2 86–98.
IEEE E. Erişir and E. Gümüşkaya, “Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture”, Kastamonu University Journal of Forestry Faculty, vol. 23, no. 2, pp. 86–98, 2023, doi: 10.17475/kastorman.1367919.
ISNAD Erişir, Emir - Gümüşkaya, Esat. “Potassium Carbonate As Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture”. Kastamonu University Journal of Forestry Faculty 23/2 (October 2023), 86-98. https://doi.org/10.17475/kastorman.1367919.
JAMA Erişir E, Gümüşkaya E. Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture. Kastamonu University Journal of Forestry Faculty. 2023;23:86–98.
MLA Erişir, Emir and Esat Gümüşkaya. “Potassium Carbonate As Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture”. Kastamonu University Journal of Forestry Faculty, vol. 23, no. 2, 2023, pp. 86-98, doi:10.17475/kastorman.1367919.
Vancouver Erişir E, Gümüşkaya E. Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture. Kastamonu University Journal of Forestry Faculty. 2023;23(2):86-98.

14178  14179       14165           14166           14167            14168